Answer :

Answer:

[tex]SA\approx 446.55\text{ ft}^2[/tex]

Step-by-step explanation:

We can see that this pyramid is composed of:

  • hexagonal base
  • 6 isosceles triangle sides

So, an equation that models its surface area is:

[tex]SA = A_{\rm base} + 6A_{\rm triangle}[/tex]

Plugging in the given base area and the area of a triangle formula:

  • [tex]A_{\rm base} = 50\text{ ft}^2[/tex]
  • [tex]A_{\rm triangle} = \dfrac{1}{2} bh[/tex]

↓↓↓

[tex]SA = 50\text{ ft}^2 + 6(1/2)(8\text{ ft})(h)[/tex]

[tex]SA = 50\text{ ft}^2 + (24\text{ ft})h[/tex]

We can solve for the triangles' height using the Pythagorean Theorem:

[tex]a^2 + b^2 = c^2[/tex]

↓ plugging in the given values

[tex](8/2)^2 + h^2 = 17^2[/tex]

↓ solving for h

[tex]h^2 = 273[/tex]

↓ taking the square root of both sides

[tex]h \approx 16.523\text{ ft}[/tex]

Finally, we can plug this value into the surface area equation:

[tex]SA \approx 50\text{ ft}^2 + (24\text{ ft})(16.523\text{ ft})[/tex]

[tex]\boxed{SA\approx 446.55\text{ ft}^2}[/tex]