Answer :
To find the volume of a cylinder, you can use the formula:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( V \)[/tex] is the volume, [tex]\( r \)[/tex] is the radius of the base of the cylinder, [tex]\( h \)[/tex] is the height of the cylinder, and [tex]\( \pi \)[/tex] (Pi) is a constant approximately equal to 3.14159.
Given:
- The radius ([tex]\( r \)[/tex]) of the cylinder's base is 5 feet.
- The height ([tex]\( h \)[/tex]) of the cylinder is 17 feet.
Let's calculate the volume step by step:
1. Square the radius:
[tex]\[ r^2 = 5^2 = 25 \][/tex]
2. Multiply the squared radius by the height:
[tex]\[ 25 \times 17 = 425 \][/tex]
3. Multiply this result by [tex]\( \pi \)[/tex] to get the volume:
[tex]\[ V = \pi \times 425 \approx 3.14159 \times 425 \][/tex]
4. Calculate the numerical result:
[tex]\[ V \approx 1335.39825 \][/tex]
Lastly, to round the volume to the nearest tenths place:
[tex]\[ V \approx 1335.4 \][/tex]
So, the volume of the cylinder to the nearest tenths place is:
[tex]\[ V = 1335.4 \, \text{cubic feet} \][/tex]
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( V \)[/tex] is the volume, [tex]\( r \)[/tex] is the radius of the base of the cylinder, [tex]\( h \)[/tex] is the height of the cylinder, and [tex]\( \pi \)[/tex] (Pi) is a constant approximately equal to 3.14159.
Given:
- The radius ([tex]\( r \)[/tex]) of the cylinder's base is 5 feet.
- The height ([tex]\( h \)[/tex]) of the cylinder is 17 feet.
Let's calculate the volume step by step:
1. Square the radius:
[tex]\[ r^2 = 5^2 = 25 \][/tex]
2. Multiply the squared radius by the height:
[tex]\[ 25 \times 17 = 425 \][/tex]
3. Multiply this result by [tex]\( \pi \)[/tex] to get the volume:
[tex]\[ V = \pi \times 425 \approx 3.14159 \times 425 \][/tex]
4. Calculate the numerical result:
[tex]\[ V \approx 1335.39825 \][/tex]
Lastly, to round the volume to the nearest tenths place:
[tex]\[ V \approx 1335.4 \][/tex]
So, the volume of the cylinder to the nearest tenths place is:
[tex]\[ V = 1335.4 \, \text{cubic feet} \][/tex]