Answer :

The solution to [tex]\( \frac{1}{2} \div 15 \times \left( 2 \frac{1}{16} - 1 \frac{1}{2} \right) \) is \(\frac{3}{160}\)[/tex].

To solve the expression [tex]\( \frac{1}{2} \div 15 \times \left( 2 \frac{1}{16} - 1 \frac{1}{2} \right) \)[/tex], let's break it down step by step:

1. Convert the mixed numbers to improper fractions:

  - [tex]\( 2 \frac{1}{16} = \frac{2 \times 16 + 1}{16} = \frac{33}{16} \)[/tex]

  - [tex]\( 1 \frac{1}{2} = \frac{1 \times 2 + 1}{2} = \frac{3}{2} \)[/tex]

2. Subtract the improper fractions:

  - Find a common denominator for [tex]\(\frac{33}{16}\)[/tex] and [tex]\(\frac{3}{2}\): \[[/tex]

    [tex]\frac{3}{2} = \frac{3 \times 8}{2 \times 8} = \frac{24}{16} \][/tex]

  - Now, subtract the fractions:

    [tex]\[ \frac{33}{16} - \frac{24}{16} = \frac{33 - 24}{16} = \frac{9}{16} \][/tex]

3. Multiply the fractions:

  - First, note that \(\frac{1}{2} \div 15\) is the same as [tex]\(\frac{1}{2} \times \frac{1}{15}\)[/tex]:

  [tex]\[ \frac{1}{2} \times \frac{1}{15} = \frac{1}{30} \][/tex]

  - Now, multiply [tex]\(\frac{1}{30}\) by \(\frac{9}{16}\): \[[/tex]

    [tex]\frac{1}{30} \times \frac{9}{16} = \frac{1 \times 9}{30 \times 16} = \frac{9}{480} \][/tex]

4. Simplify the fraction:

  - Divide the numerator and the denominator by their greatest common divisor (GCD), which is 3:

   [tex]\[ \frac{9 \div 3}{480 \div 3} = \frac{3}{160} \][/tex]

So, the solution to [tex]\( \frac{1}{2} \div 15 \times \left( 2 \frac{1}{16} - 1 \frac{1}{2} \right) \) is \(\frac{3}{160}\)[/tex].