Answer :
Answer: 2.91 moles
Explanation:
To find the number of moles of [tex]NH\(_3\)[/tex] that contain[tex]\(1.75 \times 10^{24}\)[/tex] molecules, we can use Avogadro's number, which is [tex]\(6.022 \times 10^{23}\)[/tex]molecules per mole.
The formula to calculate the number of moles from the number of molecules is:
[tex]\[\text{Number of moles} = \frac{\text{Number of molecules}}{\text{Avogadro's number}}\][/tex]
Plugging in the given values:
[tex]\[\text{Number of moles} = \frac{1.75 \times 10^{24}}{6.022 \times 10^{23}}\][/tex]
Now, perform the division:
[tex]\[\text{Number of moles} = \frac{1.75 \times 10^{24}}{6.022 \times 10^{23}} \approx 2.91\][/tex]
So, [tex]\(1.75 \times 10^{24}\)[/tex] molecules of [tex]NH\(_3\)[/tex] is approximately equal to [tex]\(2.91\)[/tex] moles.