Answer :
Answer :
- O-3y+2> 11
Solution :
O-2y-4<2
- -2y - 4 + 4 < 2 + 4
- -2y < 6
- -2y/2 < 6/2
- y > -3
O-3y+6>3
- -3y + 6 - 6 > -3 - 6
- -3y > - 9
- -3y/3 > -9/3
- -y > -3
- y > 3
O-4y-1> - 13
- -4y - 1 + 1 > -13 +1
- -4y > -12
- 4y > 12
- 4y/4 > 12/4
- y > 3
O-3y+2> 11
- -3y +2 -2 > 11-2
- -3y > 9
- -3y/3 > 9
- -y > 9
- y < -3
thus, option (4) is the correct answer.
Answer:
D) -3y + 2 > 11
Step-by-step explanation:
To determine which inequality from the provided options has the solution y < -3, solve each inequality and check if the solution matches.
Remember that when dividing or multiplying both sides of an inequality by a negative number, the direction of the inequality sign needs to be reversed.
Answer option A:
[tex]-2y-4 < 2\\\\\\-2y-4+4 < 2+4\\\\\\-2y < 6\\\\\\\dfrac{-2y}{-2} > \dfrac{6}{-2}\\\\\\y > -3[/tex]
Answer option B:
[tex]-3y+6 > 3\\\\\\-3y+6-6 > 3-6\\\\\\-3y > -3\\\\\\\dfrac{-3y}{-3} < \dfrac{-3}{-3}\\\\\\y < 1[/tex]
Answer option C:
[tex]-4y-1 > -13\\\\\\-4y-1+1 > -13+1\\\\\\-4y > -12\\\\\\\dfrac{-4y}{-4} < \dfrac{-12}{-4}\\\\\\y < 3[/tex]
Answer option D:
[tex]-3y+2 > 11\\\\\\-3y+2-2=11-2 > -13+1\\\\\\-3y > 9\\\\\\\dfrac{-3y}{-3} < \dfrac{9}{-3}\\\\\\y < -3[/tex]
Therefore, the inequality that has the solution y < -3 is option D:
[tex]\Large\boxed{\boxed{-3y+2 > 11}}[/tex]