Answer :

Answer :

  • O-3y+2> 11

Solution :

O-2y-4<2

  • -2y - 4 + 4 < 2 + 4
  • -2y < 6
  • -2y/2 < 6/2
  • y > -3

O-3y+6>3

  • -3y + 6 - 6 > -3 - 6
  • -3y > - 9
  • -3y/3 > -9/3
  • -y > -3
  • y > 3

O-4y-1> - 13

  • -4y - 1 + 1 > -13 +1
  • -4y > -12
  • 4y > 12
  • 4y/4 > 12/4
  • y > 3

O-3y+2> 11

  • -3y +2 -2 > 11-2
  • -3y > 9
  • -3y/3 > 9
  • -y > 9
  • y < -3

thus, option (4) is the correct answer.

Answer:

D) -3y + 2 > 11

Step-by-step explanation:

To determine which inequality from the provided options has the solution y < -3, solve each inequality and check if the solution matches.

Remember that when dividing or multiplying both sides of an inequality by a negative number, the direction of the inequality sign needs to be reversed.

Answer option A:

[tex]-2y-4 < 2\\\\\\-2y-4+4 < 2+4\\\\\\-2y < 6\\\\\\\dfrac{-2y}{-2} > \dfrac{6}{-2}\\\\\\y > -3[/tex]

Answer option B:

[tex]-3y+6 > 3\\\\\\-3y+6-6 > 3-6\\\\\\-3y > -3\\\\\\\dfrac{-3y}{-3} < \dfrac{-3}{-3}\\\\\\y < 1[/tex]

Answer option C:

[tex]-4y-1 > -13\\\\\\-4y-1+1 > -13+1\\\\\\-4y > -12\\\\\\\dfrac{-4y}{-4} < \dfrac{-12}{-4}\\\\\\y < 3[/tex]

Answer option D:

[tex]-3y+2 > 11\\\\\\-3y+2-2=11-2 > -13+1\\\\\\-3y > 9\\\\\\\dfrac{-3y}{-3} < \dfrac{9}{-3}\\\\\\y < -3[/tex]

Therefore, the inequality that has the solution y < -3 is option D:

[tex]\Large\boxed{\boxed{-3y+2 > 11}}[/tex]