(Supplement p.
K
Question 5, *11.2.41 >
points
Points: 0 of 3
Find the surface area of a cube with edges 6.94 cm long.
The surface area of the cube is
(Type an integer or a decimal.)
sq cm.



Answer :

To find the surface area of a cube with edges of 6.94 cm, you can use the formula for the surface area of a cube. The formula for the surface area [tex]\(S\)[/tex] of a cube is:

[tex]\[ S = 6a^2 \][/tex]

where [tex]\(a\)[/tex] is the length of an edge of the cube.

Let's break this down step by step:

1. Identify the edge length [tex]\( a \)[/tex]:
[tex]\[ a = 6.94 \text{ cm} \][/tex]

2. Square the edge length [tex]\( a \)[/tex]:
[tex]\[ a^2 = (6.94)^2 \][/tex]
To calculate [tex]\(6.94^2\)[/tex]:
[tex]\[ 6.94 \times 6.94 = 48.1636 \][/tex]

3. Multiply by 6 to find the total surface area:
[tex]\[ S = 6 \times 48.1636 \][/tex]
[tex]\[ S = 288.9816 \][/tex]

Therefore, the surface area of the cube is:
[tex]\[ 288.9816 \text{ sq cm} \][/tex]

So the surface area of a cube with edges 6.94 cm long is [tex]\( 288.9816 \)[/tex] square centimeters.