A 55.0-kg box rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.300. What is the magnitude of the horizontal force that must be applied to the box for it to start sliding along the surface? use g = 9.8 m/s².



Answer :

Answer:

161.7 N

Explanation:

To find the magnitude of the horizontal force required to start sliding a 55.0-kg box on a horizontal surface with a coefficient of static friction of 0.300, we can use the following steps:

Step 1: Calculate the normal force (n)

In this case we can sum the forces acting vertically on the box to find the normal force:

[tex]\sum \vec F_y: \vec n -\vec w=0[/tex]

[tex]\boxed{ \left \begin{array}{ccc} \text{\underline{Weight of an Object:}} \\\\ \vec w = mg \\\\ \text{Where:} \\ \bullet \ \vec w \ \text{is the weight of the object (force due to gravity)} \\ \bullet \ m \ \text{is the mass of the object} \\ \bullet \ g \ \text{is the acceleration due to gravity} \end{array} \right.}[/tex]

[tex]\Longrightarrow \vec n = mg\\\\ \\\\\Longrightarrow \vec n = (55.0 \text{ kg})(9.8 \text{ m/s}^2)\\\\\\\\\therefore \vec n = 539 \text{ N}[/tex]

Step 2: Calculate the maximum static friction force (f_s)

The static friction force can be calculated using the coefficient of static friction (μ_s) and the normal force (N):

[tex]\boxed{ \begin{array}{ccc} \text{\underline{Formula for Static Friction:}} \\\\ \vec f_s \leq \mu_s \vec n \ \Big(\text{Note: } \vec f_{s_{\text{MAX}}} = \mu_s \vec n\Big) \\\\ \text{Where:} \\ \bullet \ \vecf_s \ \text{is the actual static frictional force} \\ \bullet \ \mu_s \ \text{is the coefficient of static friction} \\ \bullet \ \vec n \ \text{is the normal force} \end{array}}[/tex]

[tex]\Longrightarrow \vec f_s = (0.300)(539 \text{ N})\\\\\\\\\therefore \vec f_s = 161.7 \text{ N}[/tex]

Step 3: Determine the horizontal force required.

Summing the forces horizontally we find,

[tex]\sum \vec F_x: \vec F_\text{min} -161.7 \text{ N}=0\\\\\\\\\therefore\boxed{ \vec F_\text{min} = 161.7 \text{ N}}[/tex]

The magnitude of the horizontal force required to start sliding the box is equal to the maximum static friction force.

View image Rochirion