Answer :

Answer:

[tex]v_f = 105\text{ m/s}[/tex]

[tex]d = 1720\text{ m}[/tex]

Step-by-step explanation:

To solve for the airplane's final velocity, we can use the kinematics equation:

[tex]v_f = v_it + at[/tex]

We are given the values:

  • [tex]a = 3.20\text{ m/s}^2[/tex]
  • [tex]t = 32.8\text{ s}[/tex]

We can assume that the airplane started from standstill:

  • [tex]v_i = 0[/tex]

Plugging these values into the kinematics equation, we get:

[tex]v_f = 0 + \left(3.20\text{ m/s}^2\right)\!(32.8\text{ s})[/tex]

[tex]\boxed{v_f = 105\text{ m/s}}[/tex]

Further Note

We can also solve for the distance the plane travels before lifting off using another kinematics equation:

[tex]d=v_it+\dfrac{1}{2}at^2[/tex]

↓ plugging in the known values

[tex]d=0+\dfrac{1}{2}\!\left(3.20\text{ m/s}^2\right)(32.8\text{ s})^2[/tex]

[tex]\boxed{d = 1720\text{ m}}[/tex]