Use the Law of Cosines. Find length x.
12
60°
11
x=
(Round the final answer to one decimal place as needed. Round all intermediate values to two decimal places as needed.)

Use the Law of Cosines Find length x 12 60 11 x Round the final answer to one decimal place as needed Round all intermediate values to two decimal places as nee class=


Answer :

Answer:

given,

a=12 <C=60⁰

b=11

c=x

according to cosine law,

a²=b²+c²-2bccosC

12²=11²+x²-2×11×xcos60⁰

144-121=x²-2×11×1/2

23=x²-11

x²=23+11

x²=34

x=✓34

x=5.83 ans.

Answer:

x ≈ 11.5

Step-by-step explanation:

To find the length ( x ) in a triangle using the Law of Cosines, we can follow these steps:

Given:

[tex](a = 12) \\ (b = 11)\\ ( gamma = 60^circ )[/tex]

The Law of Cosines states:

[tex]\[ c^2 = a^2 + b^2 - 2ab \cos(\gamma) \][/tex]

Here, ( x ) corresponds to ( c ). Thus,

[tex]\[ x^2 = 12^2 + 11^2 - 2 \times 12 \times 11 \times \cos(60^\circ) \]

[/tex]

First, compute the cosine of

[tex]( 60^ \circ ):

\cos(60^\circ) = 0.5 \]

[/tex]

Substitute the values into the formula:

[tex]\[ x^2 = 12^2 + 11^2 - 2 \times 12 \times 11 \times 0.5 \][/tex]

Calculate each term step-by-step:

[tex]\[ x^2 = 144 + 121 - 2 \times 12 \times 11 \times 0.5 \][/tex]

[tex][ x^2 = 144 + 121 - 132 ][/tex]

[tex]

\[ x^2 = 265 - 132 \][/tex]

[tex]\[ x^2 = 133 \][/tex]

Take the square root to find ( x ):

[tex]\[ x = \sqrt{133} \]

[/tex]

[tex]\[ x \approx 11.5 \][/tex]

So, the length ( x ) is approximately ( 11.5 ) when rounded to one decimal place.