Answer :

Answer:

[tex]\angle FEG=38.5^\circ[/tex]

Step-by-step explanation:

Since [tex]\triangle HFE \text{ is isosceles (because two of the sides are radii, which are equal), we know that } \\\angle FEG=\angle HFE\\\text{Since the angles in a triangle must sum to $180^\circ$},\\\text{$103 + \angle FEG + \angle HFE=180$}\\\text{Since $\angle FEG=\angle HFE$}\\\text{$103 + \angle FEG + \angle FEG=180$}\\ \angle FEG + \angle FEG = 77\\2 \angle FEG = 77\\\boxed{\angle FEG= \frac{77}{2} =38.5^\circ}[/tex]