Answer :

To find the area of a trapezium (also known as a trapezoid in some regions), we use the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times (a + b) \times h \][/tex]

where:
- [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are the lengths of the two parallel sides (bases) of the trapezium.
- [tex]\( h \)[/tex] is the height (the perpendicular distance between the two parallel sides).

Given the dimensions of the trapezium:
- [tex]\( a = 7 \, \text{cm} \)[/tex]
- [tex]\( b = 10.4 \, \text{cm} \)[/tex]
- [tex]\( h = 6.7 \, \text{cm} \)[/tex]

Let's plug these values into the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times (7 + 10.4) \times 6.7 \][/tex]

First, add the lengths of the parallel sides:

[tex]\[ a + b = 7 + 10.4 = 17.4 \, \text{cm} \][/tex]

Next, multiply this sum by the height:

[tex]\[ 17.4 \times 6.7 \][/tex]

To calculate this product:

[tex]\[ 17.4 \times 6.7 = 116.58 \, \text{cm}^2 \][/tex]

Finally, multiply by [tex]\(\frac{1}{2}\)[/tex]:

[tex]\[ \text{Area} = \frac{1}{2} \times 116.58 = 58.29 \, \text{cm}^2 \][/tex]

So, the area of the trapezium is:

[tex]\[ \boxed{58.29 \, \text{cm}^2} \][/tex]