Answer :

Answer:

[tex]R_{eq} = 30.6\,\Omega[/tex]

Explanation:

The equivalent resistance formulas are:

[tex]R_S = R_1 + R_2 + R_3 + ...[/tex]

[tex]R_P = \dfrac{1}{\dfrac{1}{R_1}+\dfrac{1}{R_2}+...}[/tex]

for resistors in series and in parallel.

First, we can get the equivalent resistance of the parallel resistors:

[tex]R_P = \dfrac{1}{\dfrac{1}{36\,\Omega} + \dfrac{1}{4\,\Omega}}[/tex]

[tex]R_P = 3.6\,\Omega[/tex]

Then, we can input this into the series equation to get the total equivalent resistance of the circuit:

[tex]R_{eq} = 3.6\,\Omega + 27\,\Omega[/tex]

[tex]R_{eq} = 30.6\,\Omega[/tex]

Further Note

We can solve for the current through the single-wire (non-parallel) parts of the circuit using the equation:

[tex]I=\dfrac{\Delta V}{R}[/tex]

where:

  • [tex]I=\text{current}[/tex]
  • [tex]\Delta V=\text{voltage drop}[/tex]
  • [tex]R=\text{resistance}[/tex]

Plugging in the known values, we get:

[tex]I=\dfrac{40\text{ V}}{30.3\,\Omega} = 1.31\text{ A}[/tex]