Answer :

Answer:

yes

Explanation:

Sure, here are the solutions to the questions:

1. **Represent on the number line:**

- (i) \(\frac{5}{7}\)

- (ii) \(-\frac{6}{7}\)

2. **Find rational numbers between:**

- (i) \(\frac{2}{3}\) and \(\frac{3}{4}\)

- (ii) \(\frac{1}{9}\) and \(\frac{2}{9}\)

For (i):

\[

\frac{2}{3} = 0.666\ldots \quad \text{and} \quad \frac{3}{4} = 0.75

\]

Rational numbers between them: 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74 (e.g., \(\frac{67}{100}\), \(\frac{68}{100}\))

For (ii):

\[

\frac{1}{9} = 0.111\ldots \quad \text{and} \quad \frac{2}{9} = 0.222\ldots

\]

Rational numbers between them: 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21 (e.g., \(\frac{12}{100}\), \(\frac{13}{100}\))

3. **Find three rational numbers between \(\frac{3}{5}\) and \(\frac{4}{7}\):**

Convert to decimals:

\[

\frac{3}{5} = 0.6 \quad \text{and} \quad \frac{4}{7} = 0.571\ldots

\]

Rational numbers: 0.58, 0.59, 0.595

4. **Find five rational numbers between \(\frac{3}{8}\) and \(\frac{3}{4}\):**

\[

\frac{3}{8} = 0.375 \quad \text{and} \quad \frac{3}{4} = 0.75

\]

Rational numbers: 0.4, 0.45, 0.5, 0.6, 0.7

5. **Find six rational numbers between 3 and 4:**

Rational numbers: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6

6. **Represent \(\sqrt{2}\) on the number line:**

Use the geometric method to draw the square root on the number line.

7. **Represent \(\sqrt{3}\) on the number line:**

Use the geometric method to draw the square root on the number line.

8. **Represent \(\sqrt{5}\) on the number line:**

Use the geometric method to draw the square root on the number line.

9. **Write in decimal form and identify the type of decimal expansion:**

- (i) \(\frac{36}{100} = 0.36\) (Terminating)

- (ii) \(\frac{1}{11} \approx 0.0909\ldots\) (Non-terminating, repeating)

- (iii) \(\frac{4}{8} = 0.5\) (Terminating)

- (iv) \(\frac{9}{10} = 0.9\) (Terminating)

- (v) \(\frac{3}{7} \approx 0.428571\ldots\) (Non-terminating, repeating)

- (vi) \(\frac{7}{5} = 1.4\) (Terminating)

- (vii) \(\frac{1}{7} \approx 0.142857\ldots\) (Non-terminating, repeating)

- (viii) \(\frac{229}{400} = 0.5725\) (Terminating)

10. **Find three irrational numbers between 5 and 7:**

\(\sqrt{26}\), \(\sqrt{27}\), \(\sqrt{28}\)

11. **Express in the form of \(p/q\):**

- (i) \(0.6 = \frac{6}{10} = \frac{3}{5}\)

- (ii) \(0.47 = \frac{47}{100}\)

- (iii) \(18.47 = 18 + \frac{47}{100} = \frac{1847}{100}\)

- (iv) \(0.235 = \frac{235}{1000} = \frac{47}{200}\)

- (v) \(0.053 = \frac{53}{1000}\)

- (vi) \(0.2 = \frac{2}{10} = \frac{1}{5}\)

- (vii) \(0.53 = \frac{53}{100}\)

- (viii) \(0.2 = \frac{2}{10} = \frac{1}{5}\)

12. **Express \(0.\overline{9999}\) in the form of \(p/q\):**

Let \(x = 0.\overline{9999}\),

\[

10x = 9.\overline{9999}

\]

\[

10x - x = 9.9999 - 0.9999

\]

\[

9x = 9

\]

\[

x = 1

\]

13. **Classify the following as rational or irrational:**

- (i) \(\sqrt{23}\) (Irrational)

- (ii) \(\sqrt{225} = 15\) (Rational)

- (iii) 0.35 (Rational)

- (iv) 7.4747 (Rational)

- (v) \(1.010010001\ldots\) (Irrational)

14. **Visualize 3.765 on the number line:**

Between 3.7 and 3.8, closer to 3.8.

15. **Visualize 4.127 on the number line:**

Between 4.1 and 4.2, closer to 4.1.

16. **Find two rational and two irrational numbers between 0.5 and 0.55:**

Rational: 0.51, 0.52

Irrational: 0.515515515\ldots, 0.525525525\ldots

17. **Add:**

\[

(2\sqrt{3} - 5\sqrt{2}) + (\sqrt{3} + 2\sqrt{2}) = 3\sqrt{3} - 3\sqrt{2}

\]

18. **Multiply:**

- (i) \(\sqrt{3} \times \sqrt{2} = \sqrt{6}\)

- (ii) \(3\sqrt{2} \times \sqrt{7} = 3\sqrt{14}\)

19. **Divide:**

- (i) \(\frac{16\sqrt{5}}{4\sqrt{2}} = \frac{16}{4} \times \frac{\sqrt{5}}{\sqrt{2}} = 4\sqrt{\frac{5}{2}}\)

- (ii) \(\frac{12\sqrt{5}}{4\sqrt{3}} = \frac{12}{4} \times \frac{\sqrt{5}}{\sqrt{3}} = 3\sqrt{\frac{5}{3}}\)

20. **Simplify:**

\[

(3 + \sqrt{2})(3 - \sqrt{2}) = 3^2 - (\sqrt{2})^2 = 9 - 2 = 7

\]