here is a rectangle which is not drawn accurately 7cm and 3cm.
a square has the same perimeter as the rectangle.what is the side length of this squa
re



Answer :

Answer:

→ 5 cm

Step-by-step explanation:

Given :

  • A rectangle whose length is 7 cm and width is 3 cm.

  • Square has same perimeter as of the rectangle.

We have to find :

  • Side length of square.

Solution :

We know that ,

[tex] \: \: \: \: \: \: \: \: \boxed{ \sf{Perimeter_{(Rectangle)}= 2(l + w)}}[/tex]

Where,

  • l refers to length

  • w refers to width

[tex] \sf{ \hookrightarrow \: \: \:2(7 + 3 )}[/tex]

[tex] \sf{ \hookrightarrow \: \: \:2(10 )}[/tex]

[tex] \sf{ \hookrightarrow \: \: \: \underline{\bold{20 \: cm}}}[/tex]

Therefore, perimeter of rectangle is 20 cm.

According to Question :-

[tex] \: \: \: \: \: \underline{\sf{Perimeter_{(Rectangle)} =Perimeter_{(Square)} }}[/tex]

We know that,

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf{Perimeter_{(Square)} = 4a}}[/tex]

Where,

  • a refers to side length

[tex] \sf{ \: \: \: \dashrightarrow \: \: \: \:20 = 4a }[/tex]

Dividing both sides with 4 :

[tex] \sf{ \: \: \: \dashrightarrow \: \: \: \: \dfrac{ \cancel{4}a }{ \cancel{4}}= \cancel{\dfrac{20 }{4}}}[/tex]

We get :

[tex] \sf{ \: \: \: \dashrightarrow \: \: \: \: \underline{\boxed{\bold{a = 5 \: cm}}}} \: \: \: \: \bigstar[/tex]

>>> Therefore, side length of square is "5 cm".