Answer :
Answer:
→ 5 cm
Step-by-step explanation:
Given :
- A rectangle whose length is 7 cm and width is 3 cm.
- Square has same perimeter as of the rectangle.
We have to find :
- Side length of square.
Solution :
We know that ,
[tex] \: \: \: \: \: \: \: \: \boxed{ \sf{Perimeter_{(Rectangle)}= 2(l + w)}}[/tex]
Where,
- l refers to length
- w refers to width
[tex] \sf{ \hookrightarrow \: \: \:2(7 + 3 )}[/tex]
[tex] \sf{ \hookrightarrow \: \: \:2(10 )}[/tex]
[tex] \sf{ \hookrightarrow \: \: \: \underline{\bold{20 \: cm}}}[/tex]
Therefore, perimeter of rectangle is 20 cm.
According to Question :-
[tex] \: \: \: \: \: \underline{\sf{Perimeter_{(Rectangle)} =Perimeter_{(Square)} }}[/tex]
We know that,
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf{Perimeter_{(Square)} = 4a}}[/tex]
Where,
- a refers to side length
[tex] \sf{ \: \: \: \dashrightarrow \: \: \: \:20 = 4a }[/tex]
Dividing both sides with 4 :
[tex] \sf{ \: \: \: \dashrightarrow \: \: \: \: \dfrac{ \cancel{4}a }{ \cancel{4}}= \cancel{\dfrac{20 }{4}}}[/tex]
We get :
[tex] \sf{ \: \: \: \dashrightarrow \: \: \: \: \underline{\boxed{\bold{a = 5 \: cm}}}} \: \: \: \: \bigstar[/tex]
>>> Therefore, side length of square is "5 cm".