Answer :
To find the kinetic energy of a football player, we use the kinetic energy formula:
[tex]\[ KE = \frac{1}{2} \times \text{mass} \times \text{velocity}^2 \][/tex]
First, insert the given values for mass and velocity into the formula:
- Mass [tex]\( m = 109.3 \)[/tex] kg
- Velocity [tex]\( v = 23.3 \)[/tex] m/s
So,
[tex]\[ KE = \frac{1}{2} \times 109.3 \times (23.3)^2 \][/tex]
Next, let's specify the significant digits. Given values have:
- Mass [tex]\( m \)[/tex] with 4 significant digits (109.3)
- Velocity [tex]\( v \)[/tex] with 3 significant digits (23.3)
Kinetic energy should thus be rounded to 3 significant digits because the value with the least number of significant digits (velocity) dictates the precision of the result.
The calculated kinetic energy is approximately 29668.9385 Joules. When rounded to 3 significant digits, the kinetic energy is:
29668.939
[tex]\[ KE = \frac{1}{2} \times \text{mass} \times \text{velocity}^2 \][/tex]
First, insert the given values for mass and velocity into the formula:
- Mass [tex]\( m = 109.3 \)[/tex] kg
- Velocity [tex]\( v = 23.3 \)[/tex] m/s
So,
[tex]\[ KE = \frac{1}{2} \times 109.3 \times (23.3)^2 \][/tex]
Next, let's specify the significant digits. Given values have:
- Mass [tex]\( m \)[/tex] with 4 significant digits (109.3)
- Velocity [tex]\( v \)[/tex] with 3 significant digits (23.3)
Kinetic energy should thus be rounded to 3 significant digits because the value with the least number of significant digits (velocity) dictates the precision of the result.
The calculated kinetic energy is approximately 29668.9385 Joules. When rounded to 3 significant digits, the kinetic energy is:
29668.939