7EE4
97-5
3. The area of a rectangle is 72 mm² and the length is 8 mm. What is the perimeter of the
rectangle?
7EE4



Answer :

Sure! Let's solve the problem step-by-step:

### Given:
- The area of the rectangle [tex]\( A = 72 \)[/tex] mm²
- The length of the rectangle [tex]\( l = 8 \)[/tex] mm

### To Find:
- The perimeter of the rectangle, [tex]\( P \)[/tex]

### Steps:

1. Determine the width of the rectangle ([tex]\( w \)[/tex]):

We know the area of the rectangle is given by the formula:
[tex]\[ A = l \times w \][/tex]

We can rearrange this formula to solve for the width ([tex]\( w \)[/tex]):
[tex]\[ w = \frac{A}{l} \][/tex]

Plugging in the given values:
[tex]\[ w = \frac{72 \, \text{mm}^2}{8 \, \text{mm}} = 9 \, \text{mm} \][/tex]

2. Calculate the perimeter ([tex]\( P \)[/tex]):

The formula for the perimeter of a rectangle is:
[tex]\[ P = 2 \times (l + w) \][/tex]

Substituting in the values for length and width:
[tex]\[ P = 2 \times (8 \, \text{mm} + 9 \, \text{mm}) \][/tex]

Simplify the expression inside the parentheses:
[tex]\[ P = 2 \times 17 \, \text{mm} \][/tex]

Finally, perform the multiplication:
[tex]\[ P = 34 \, \text{mm} \][/tex]

### Answer:
The perimeter of the rectangle is 34 mm.