Sure, let's solve the given equation step by step.
We are given:
[tex]\[ X = \frac{2x + 1}{\sqrt{3}} \][/tex]
To find the value of [tex]\( x \)[/tex], let's follow these steps:
### Step 1: Cross-Multiply
First, we'll clear the fraction by multiplying both sides by [tex]\( \sqrt{3} \)[/tex]:
[tex]\[ X \cdot \sqrt{3} = 2x + 1 \][/tex]
### Step 2: Isolate the Variable [tex]\( x \)[/tex]
To solve for [tex]\( x \)[/tex], we'll first subtract 1 from both sides:
[tex]\[ X \cdot \sqrt{3} - 1 = 2x \][/tex]
Next, we'll divide both sides by 2 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{X \cdot \sqrt{3} - 1}{2} \][/tex]
### Final Solution
Thus, the value of [tex]\( x \)[/tex] is given by:
[tex]\[ x = \frac{X \cdot \sqrt{3} - 1}{2} \][/tex]
This is the expression for [tex]\( x \)[/tex] in terms of [tex]\( X \)[/tex]. If [tex]\( X \)[/tex] is provided or if you want to substitute a specific value for [tex]\( X \)[/tex], you can do so to find the numerical value of [tex]\( x \)[/tex].