Answer :
To determine the effective resistance of the television set, we can use Ohm's Law. Ohm's Law relates the voltage ([tex]\( V \)[/tex]), current ([tex]\( I \)[/tex]), and resistance ([tex]\( R \)[/tex]) in an electrical circuit with the formula:
[tex]\[ V = I \cdot R \][/tex]
Where:
- [tex]\( V \)[/tex] is the voltage in volts (V)
- [tex]\( I \)[/tex] is the current in amperes (A)
- [tex]\( R \)[/tex] is the resistance in ohms (Ω)
We need to find the resistance ([tex]\( R \)[/tex]) of the television set. To do this, we can rearrange Ohm's Law to solve for [tex]\( R \)[/tex]:
[tex]\[ R = \frac{V}{I} \][/tex]
Given:
- The current ([tex]\( I \)[/tex]) is 7.5 A
- The voltage ([tex]\( V \)[/tex]) is 115 V
Substitute these values into the rearranged formula:
[tex]\[ R = \frac{115 \, \text{V}}{7.5 \, \text{A}} \][/tex]
Perform the division:
[tex]\[ R = \frac{115}{7.5} \][/tex]
[tex]\[ R = 15.33\overline{3} \, \Omega \][/tex]
Therefore, the effective resistance of the television set is approximately [tex]\( 15.33 \, \Omega \)[/tex].
[tex]\[ V = I \cdot R \][/tex]
Where:
- [tex]\( V \)[/tex] is the voltage in volts (V)
- [tex]\( I \)[/tex] is the current in amperes (A)
- [tex]\( R \)[/tex] is the resistance in ohms (Ω)
We need to find the resistance ([tex]\( R \)[/tex]) of the television set. To do this, we can rearrange Ohm's Law to solve for [tex]\( R \)[/tex]:
[tex]\[ R = \frac{V}{I} \][/tex]
Given:
- The current ([tex]\( I \)[/tex]) is 7.5 A
- The voltage ([tex]\( V \)[/tex]) is 115 V
Substitute these values into the rearranged formula:
[tex]\[ R = \frac{115 \, \text{V}}{7.5 \, \text{A}} \][/tex]
Perform the division:
[tex]\[ R = \frac{115}{7.5} \][/tex]
[tex]\[ R = 15.33\overline{3} \, \Omega \][/tex]
Therefore, the effective resistance of the television set is approximately [tex]\( 15.33 \, \Omega \)[/tex].