Joined. Determine: angle of inclination for AC and BC are 0 and a respectively. D(xy) A(0:7) C(7:4) B(10:2) 2.1 The length of AB (Leave your answer in simplified surd form.) (3) 2.2 The gradient of AC. (2) 2.3 The size of, the inclination of AC. (3) 2.4 The magnitude (size) of BCD. (4)​



Answer :

Answer:

AB = 5√5, Gradient of AC = -3/7, Inclination of AC ≈ -22.62°, Magnitude of BCD = √13

Step-by-step explanation:

Use the distance formula to find AB: AB = √((10-0)^2 + (2-7)^2) = √(100 + 25) = √125 = 5√5

Find the gradient of AC using (y2-y1)/(x2-x1): m = (4-7)/(7-0) = -3/7

Calculate the angle of inclination θ using tan(θ) = m: θ = arctan(-3/7) ≈ -22.62°

Find the magnitude of BCD using the distance formula: BCD = √((10-7)^2 + (2-4)^2) = √9 + 4 = √13