A solid cuboid has a volume of 300 cm³
The cuboid has a total surface area of 370 cm²
The length of the cuboid is 20 cm.
The width of the cuboid is greater than the height of the cuboid.
Work out the height of the cuboid.
You must show all your working.



Answer :

To find the height of the cuboid, we can follow a step-by-step procedure using the given information:

1. Given Information:
- Volume (V) of the cuboid = 300 cm³
- Surface area (SA) of the cuboid = 370 cm²
- Length (L) of the cuboid = 20 cm

2. Formulating Equations:
Let the width of the cuboid be [tex]\( W \)[/tex] and the height be [tex]\( H \)[/tex].

- The volume of the cuboid is given by:
[tex]\[ V = L \times W \times H \][/tex]
Substituting the given values, we have:
[tex]\[ 300 = 20 \times W \times H \][/tex]

- Solving for [tex]\( W \times H \)[/tex]:
[tex]\[ W \times H = \frac{300}{20} = 15 \quad (1) \][/tex]

- The surface area of the cuboid is given by:
[tex]\[ SA = 2(L \times W + W \times H + H \times L) \][/tex]
Substituting the given values, we have:
[tex]\[ 370 = 2(20 \times W + W \times H + H \times 20) \][/tex]

- Simplified, this becomes:
[tex]\[ 370 = 40W + 2WH + 40H \][/tex]
Dividing the entire equation by 2, we get:
[tex]\[ 185 = 20W + WH + 20H \quad (2) \][/tex]

3. Solving the Equations:
From equation (1), we have [tex]\( W \times H = 15 \)[/tex]. Solving for [tex]\( W \)[/tex]:
[tex]\[ W = \frac{15}{H} \][/tex]

Substituting [tex]\( W \)[/tex] in equation (2):
[tex]\[ 185 = 20\left(\frac{15}{H}\right) + \frac{15}{H} \times H + 20H \][/tex]

Simplifying, we get:
[tex]\[ 185 = 300/H + 15 + 20H \][/tex]

Rearranging the equation gives us:
[tex]\[ 185 - 15 = \frac{300}{H} + 20H \][/tex]
[tex]\[ 170 = \frac{300}{H} + 20H \][/tex]

4. Multiplying through by [tex]\( H \)[/tex] to eliminate the fraction:
[tex]\[ 170H = 300 + 20H^2 \][/tex]

Rearranging into a standard quadratic equation:
[tex]\[ 20H^2 + 300 - 170H = 0 \][/tex]
[tex]\[ 20H^2 - 170H + 300 = 0 \][/tex]

5. Solving the Quadratic Equation:
We can use the quadratic formula [tex]\( H = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 20 \)[/tex], [tex]\( b = -170 \)[/tex], and [tex]\( c = 300 \)[/tex].

[tex]\[ H = \frac{-(-170) \pm \sqrt{(-170)^2 - 4 \times 20 \times 300}}{2 \times 20} \][/tex]
[tex]\[ H = \frac{170 \pm \sqrt{28900 - 24000}}{40} \][/tex]
[tex]\[ H = \frac{170 \pm \sqrt{4900}}{40} \][/tex]
[tex]\[ H = \frac{170 \pm 70}{40} \][/tex]

This yields two potential solutions:
[tex]\[ H_1 = \frac{240}{40} = 6 \quad \text{and} \quad H_2 = \frac{100}{40} = 2.5 \][/tex]

6. Identifying the Correct Height:
We know that the width [tex]\( W \)[/tex] must be greater than the height [tex]\( H \)[/tex]. Checking both solutions:
- If [tex]\( H = 6 \)[/tex]:
[tex]\[ W = \frac{15}{H} = \frac{15}{6} = 2.5 \quad \text{(not valid as W < H)} \][/tex]
- If [tex]\( H = 2.5 \)[/tex]:
[tex]\[ W = \frac{15}{H} = \frac{15}{2.5} = 6 \quad \text{(valid as W > H)} \][/tex]

Thus, the height [tex]\( H \)[/tex] of the cuboid is:
[tex]\[ H = 2.5 \, \text{cm} \][/tex]