m
C.
d.
the sum
If the sum of first 15 terms and 19 terms of an A.P. are 360 and 570 respectively, then
how many terms from the first give the sum 759?
The sixth term of an A.P. is 5 times the first term and the eleventh



Answer :

To solve this problem, we need to use formulas and properties of Arithmetic Progressions (A.P.). Let's break it down step-by-step:

### Given Information:

1. The sum of the first 15 terms [tex]\( S_{15} \)[/tex] is 360
2. The sum of the first 19 terms [tex]\( S_{19} \)[/tex] is 570
3. The sixth term of the A.P. is 5 times the first term.

We need to find the number of terms [tex]\( n \)[/tex] such that the sum of the first [tex]\( n \)[/tex] terms is 759.

### Steps to Solve:

1. Sum of an Arithmetic Progression:

The formula for the sum [tex]\( S_n \)[/tex] of the first [tex]\( n \)[/tex] terms of an A.P. is given by:
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]
where [tex]\( a \)[/tex] is the first term and [tex]\( d \)[/tex] is the common difference.

2. Using the given sums [tex]\( S_{15} \)[/tex] and [tex]\( S_{19} \)[/tex]:

For the first 15 terms:
[tex]\[ S_{15} = \frac{15}{2} \left( 2a + 14d \right) = 360 \][/tex]
Simplifying:
[tex]\[ 15 \left( 2a + 14d \right) = 720 \implies 2a + 14d = 48 \implies a + 7d = 24 \quad \text{(Equation 1)} \][/tex]

For the first 19 terms:
[tex]\[ S_{19} = \frac{19}{2} \left( 2a + 18d \right) = 570 \][/tex]
Simplifying:
[tex]\[ 19 \left( 2a + 18d \right) = 1140 \implies 2a + 18d = 60 \implies a + 9d = 30 \quad \text{(Equation 2)} \][/tex]

3. Solving the simultaneous equations (Equation 1 and Equation 2):

[tex]\[ a + 7d = 24 \quad \text{(Equation 1)} \][/tex]
[tex]\[ a + 9d = 30 \quad \text{(Equation 2)} \][/tex]

Subtract Equation 1 from Equation 2:
[tex]\[ (a + 9d) - (a + 7d) = 30 - 24 \][/tex]
[tex]\[ 2d = 6 \implies d = 3 \][/tex]

Substitute [tex]\( d = 3 \)[/tex] into Equation 1:
[tex]\[ a + 7 \cdot 3 = 24 \implies a + 21 = 24 \implies a = 3 \][/tex]

4. Finding the number of terms [tex]\( n \)[/tex] such that [tex]\( S_n = 759 \)[/tex]:

Using the sum formula again:
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) = 759 \][/tex]
Substitute [tex]\( a = 3 \)[/tex] and [tex]\( d = 3 \)[/tex]:
[tex]\[ 759 = \frac{n}{2} \left( 2 \cdot 3 + (n-1) \cdot 3 \right) \][/tex]
Simplify:
[tex]\[ 759 = \frac{n}{2} \left( 6 + 3n - 3 \right) \][/tex]
[tex]\[ 759 = \frac{n}{2} \left( 3 + 3n \right) \][/tex]
[tex]\[ 759 = \frac{3n(1 + n)}{2} \][/tex]
[tex]\[ 1518 = 3n(n + 1) \][/tex]
[tex]\[ 506 = n(n + 1) \][/tex]
[tex]\[ n^2 + n - 506 = 0 \][/tex]

Solving the quadratic equation [tex]\( n^2 + n - 506 = 0 \)[/tex]:
[tex]\[ n = \frac{-1 \pm \sqrt{1 + 4 \cdot 506}}{2} \][/tex]
[tex]\[ n = \frac{-1 \pm \sqrt{1 + 2024}}{2} \][/tex]
[tex]\[ n = \frac{-1 \pm \sqrt{2025}}{2} \][/tex]
[tex]\[ n = \frac{-1 \pm 45}{2} \][/tex]

Choosing the positive root:
[tex]\[ n = \frac{44}{2} = 22 \][/tex]

### Conclusion:
The number of terms from the first that give the sum 759 is [tex]\( 22 \)[/tex].