Answer :

Answer:

To find the four smallest positive solutions to the equation \( \csc(3x) - 9 = 0 \), we need to follow these steps:

1. Solve for \(\csc(3x)\):

\[

\csc(3x) - 9 = 0 \implies \csc(3x) = 9

\]

2. Recall that \(\csc(3x) = \frac{1}{\sin(3x)}\). Therefore, we have:

\[

\frac{1}{\sin(3x)} = 9 \implies \sin(3x) = \frac{1}{9}

\]

3. Find the general solutions for \(3x\) when \(\sin(3x) = \frac{1}{9}\):

\[

3x = \arcsin\left(\frac{1}{9}\right) + 2k\pi \quad \text{or} \quad 3x = \pi - \arcsin\left(\frac{1}{9}\right) + 2k\pi \quad \text{for} \; k \in \mathbb{Z}

\]

4. Solve for \(x\):

\[

x = \frac{1}{3} \arcsin\left(\frac{1}{9}\right) + \frac{2k\pi}{3} \quad \text{or} \quad x = \frac{\pi}{3} - \frac{1}{3} \arcsin\left(\frac{1}{9}\right) + \frac{2k\pi}{3}

\]

Now, we will calculate the four smallest positive solutions for \(x\).

### Calculation Steps

Let's denote \(\theta = \arcsin\left(\frac{1}{9}\right)\).

1. First solution (\(k=0\)):

\[

x_1 = \frac{\theta}{3}

\]

2. Second solution (\(k=0\)):

\[

x_2 = \frac{\pi}{3} - \frac{\theta}{3}

\]

3. Third solution (\(k=1\)):

\[

x_3 = \frac{\theta}{3} + \frac{2\pi}{3}

\]

4. Fourth solution (\(k=1\)):

\[

x_4 = \frac{\pi}{3} - \frac{\theta}{3} + \frac{2\pi}{3} = \frac{\pi}{3} - \frac{\theta}{3} + \frac{2\pi}{3} = \pi - \frac{\theta}{3}

\]

### Numerical Values

1. Calculate \(\theta\):

\[

\theta = \arcsin\left(\frac{1}{9}\right)

\]

Let's calculate the numerical values of these solutions.

\[

\theta \approx \arcsin\left(\frac{1}{9}\right) \approx 0.111

\]

Using this approximation:

1. \(x_1 \approx \frac{0.111}{3} \approx 0.037\)

2. \(x_2 \approx \frac{\pi}{3} - \frac{0.111}{3} \approx 1.047 - 0.037 \approx 1.010\)

3. \(x_3 \approx \frac{0.037 + 2\pi/3} \approx 0.037 + 2.094 \approx 2.131\)

4. \(x_4 \approx \pi - 0.037 \approx 3.105\)

Thus, the four smallest positive solutions for \(x\) are approximately:

\[

0.037, 1.010, 2.131, 3.105

\]