Answer:
To find the projection of u onto v, we need to calculate:
proj subscript v baseline u = ((u · v) / ||v||²) v
First, let's find the dot product u · v:
u · v = <-9, 0, 1> · <1, 5, -5> = -9(1) + 0(5) + 1(-5) = -14
Next, let's find the magnitude of v:
||v|| = √(1² + 5² + (-5)²) = √(1 + 25 + 25) = √51
Now, we can calculate the projection:
proj subscript v baseline u = ((-14) / (√51)²) v = (-14 / 51) v = (-14 / 51) <1, 5, -5> = <-14/51, -70/51, 70/51>
So, the projection of u onto v is:
proj subscript v baseline u = <-14/51, -70/51, 70/51>
scal subscript v baseline u = (u · v) / ||v||
We already calculated the dot product u · v = -14 and the magnitude of v = √51.
So, we can plug in these values:
scal subscript v baseline u = (-14) / √51
To simplify, we can rationalize the denominator:
scal subscript v baseline u = (-14) / √51 × √51 / √51 = -14√51 / 51
So, the scalar component of u in the direction of v is:
scal subscript v baseline u = -14√51 / 51
Step-by-step explanation: