Answered

[K1] 3. What's the centripetal acceleration (magnitude) of an object traveling 2.3 m/s around a circle of
diameter 0.6 m?
a. 5.0 m/s/s
b. 18 m/s/s
C.
1.0 x 10^1 m/s/s
d. 8.8 m/s/s



Answer :

To determine the centripetal acceleration of an object traveling in a circular path, you can use the following formula:

[tex]\[ a_c = \frac{v^2}{r} \][/tex]

where:
- [tex]\( a_c \)[/tex] is the centripetal acceleration,
- [tex]\( v \)[/tex] is the velocity of the object, and
- [tex]\( r \)[/tex] is the radius of the circular path.

Given:
- The velocity, [tex]\( v = 2.3 \, \text{m/s} \)[/tex]
- The diameter of the circle, [tex]\( d = 0.6 \, \text{m} \)[/tex]

First, find the radius of the circle. The radius [tex]\( r \)[/tex] is half of the diameter:

[tex]\[ r = \frac{d}{2} = \frac{0.6 \, \text{m}}{2} = 0.3 \, \text{m} \][/tex]

Next, substitute the values of [tex]\( v \)[/tex] and [tex]\( r \)[/tex] into the centripetal acceleration formula:

[tex]\[ a_c = \frac{(2.3 \, \text{m/s})^2}{0.3 \, \text{m}} \][/tex]

Perform the calculations:

[tex]\[ a_c = \frac{5.29 \, \text{m}^2/\text{s}^2}{0.3 \, \text{m}} \][/tex]
[tex]\[ a_c = 17.63 \, \text{m/s}^2 \][/tex]

Therefore, the magnitude of the centripetal acceleration is approximately [tex]\( 17.63 \, \text{m/s}^2 \)[/tex].

Looking at the given options:
a. 5.0 m/s[tex]\(^2\)[/tex]
b. 18 m/s[tex]\(^2\)[/tex]
c. 1.0 x 10¹ m/s²
d. 8.8 m/s[tex]\(^2\)[/tex]

The option that is closest to [tex]\( 17.63 \, \text{m/s}^2 \)[/tex] is:
b. 18 m/s[tex]\(^2\)[/tex]

So, the correct answer is b. 18 m/s[tex]\(^2\)[/tex].