The volume of a cylinder is 54 r cm³. If the radius is 3 cm, what is the height of the cylinder?
3 cm
A.
18 cm
B.
6 cm
O C.
9 cm
COD.
3 cm



Answer :

To find the height of a cylinder given its volume and radius, we can use the formula for the volume of a cylinder:

[tex]\[ V = \pi r^2 h \][/tex]

where [tex]\( V \)[/tex] is the volume, [tex]\( r \)[/tex] is the radius, and [tex]\( h \)[/tex] is the height.

Here are the given values:
- The volume [tex]\( V = 54 \pi \, \text{cm}^3 \)[/tex]
- The radius [tex]\( r = 3 \, \text{cm} \)[/tex]

We need to find the height [tex]\( h \)[/tex].

First, let's rearrange the volume formula to solve for height [tex]\( h \)[/tex]:

[tex]\[ h = \frac{V}{\pi r^2} \][/tex]

Now plug in the given values:

[tex]\[ h = \frac{54 \pi}{\pi \cdot 3^2} \][/tex]

Simplify the expression:

[tex]\[ h = \frac{54 \pi}{\pi \cdot 9} \][/tex]

Cancel out [tex]\( \pi \)[/tex]:

[tex]\[ h = \frac{54}{9} \][/tex]

Simplify the fraction:

[tex]\[ h = 6 \][/tex]

Hence, the height of the cylinder is [tex]\( 6 \, \text{cm} \)[/tex].

Therefore, the correct answer is:

B. 6 cm