Answer :

To solve for the height of the rectangular prism, we'll use the formula for the volume of a rectangular prism:

[tex]\[ \text{Volume} = \text{Base Area} \times \text{Height} \][/tex]

Given:
- Volume ([tex]\( V \)[/tex]) = 720 cm³
- Base Area ([tex]\( A \)[/tex]) = 80 cm²

We need to find the height ([tex]\( h \)[/tex]). Rearrange the formula to solve for height:

[tex]\[ \text{Height} = \frac{\text{Volume}}{\text{Base Area}} \][/tex]

Now, substitute the given values into the equation:

[tex]\[ h = \frac{720 \, \text{cm}^3}{80 \, \text{cm}^2} \][/tex]

Perform the division:

[tex]\[ h = \frac{720}{80} \][/tex]

[tex]\[ h = 9 \, \text{cm} \][/tex]

Therefore, the height of the rectangular prism is [tex]\( 9 \)[/tex] cm.

So, the correct answer is:
- [tex]\( 9 \)[/tex] cm