Answer :
Let's find the number of sides of a regular polygon with an interior angle of 162°. Here are the steps:
1. Understand the Relationship:
The formula to calculate the interior angle [tex]\(\theta\)[/tex] of a regular polygon with [tex]\(n\)[/tex] sides is:
[tex]\[ \theta = \frac{(n-2) \times 180^\circ}{n} \][/tex]
We are given that [tex]\(\theta = 162^\circ\)[/tex].
2. Set Up the Equation:
Substitute the given interior angle into the formula:
[tex]\[ 162 = \frac{(n-2) \times 180}{n} \][/tex]
3. Clear the Fraction:
Multiply both sides of the equation by [tex]\(n\)[/tex] to get rid of the denominator:
[tex]\[ 162n = (n-2) \times 180 \][/tex]
4. Expand and Simplify:
Expand the right-hand side:
[tex]\[ 162n = 180n - 360 \][/tex]
5. Isolate [tex]\(n\)[/tex]:
Move all terms involving [tex]\(n\)[/tex] to one side of the equation:
[tex]\[ 162n - 180n = -360 \][/tex]
Simplify the left side:
[tex]\[ -18n = -360 \][/tex]
6. Solve for [tex]\(n\)[/tex]:
Divide both sides by -18:
[tex]\[ n = \frac{-360}{-18} \][/tex]
[tex]\[ n = 20 \][/tex]
So, the number of sides of the regular polygon with an interior angle of 162° is [tex]\( \boxed{20} \)[/tex].
1. Understand the Relationship:
The formula to calculate the interior angle [tex]\(\theta\)[/tex] of a regular polygon with [tex]\(n\)[/tex] sides is:
[tex]\[ \theta = \frac{(n-2) \times 180^\circ}{n} \][/tex]
We are given that [tex]\(\theta = 162^\circ\)[/tex].
2. Set Up the Equation:
Substitute the given interior angle into the formula:
[tex]\[ 162 = \frac{(n-2) \times 180}{n} \][/tex]
3. Clear the Fraction:
Multiply both sides of the equation by [tex]\(n\)[/tex] to get rid of the denominator:
[tex]\[ 162n = (n-2) \times 180 \][/tex]
4. Expand and Simplify:
Expand the right-hand side:
[tex]\[ 162n = 180n - 360 \][/tex]
5. Isolate [tex]\(n\)[/tex]:
Move all terms involving [tex]\(n\)[/tex] to one side of the equation:
[tex]\[ 162n - 180n = -360 \][/tex]
Simplify the left side:
[tex]\[ -18n = -360 \][/tex]
6. Solve for [tex]\(n\)[/tex]:
Divide both sides by -18:
[tex]\[ n = \frac{-360}{-18} \][/tex]
[tex]\[ n = 20 \][/tex]
So, the number of sides of the regular polygon with an interior angle of 162° is [tex]\( \boxed{20} \)[/tex].