To find the volume of an oblique cylinder, follow these steps:
1. Identify the given values:
- Base diameter = 6 meters
- Height = 25 meters
- Value of [tex]\( \pi \)[/tex] (Pi) = 3.14
2. Calculate the radius of the base:
The radius [tex]\( r \)[/tex] is half of the diameter.
[tex]\[
r = \frac{\text{diameter}}{2} = \frac{6}{2} = 3 \text{ meters}
\][/tex]
3. Calculate the area of the base:
The formula to find the area of a circle is [tex]\( A = \pi r^2 \)[/tex].
[tex]\[
A = 3.14 \times (3)^2 = 3.14 \times 9 = 28.26 \text{ square meters}
\][/tex]
4. Calculate the volume of the oblique cylinder:
The volume [tex]\( V \)[/tex] of a cylinder is given by the formula [tex]\( V = \text{Base Area} \times \text{Height} \)[/tex].
[tex]\[
V = 28.26 \times 25 = 706.5 \text{ cubic meters}
\][/tex]
5. Round the volume to the nearest whole number:
[tex]\[
706.5 \text{ rounded to the nearest whole number is } 706
\][/tex]
6. Include the correct unit:
The unit for volume is cubic meters (m³).
Therefore, the volume of the oblique cylinder is:
[tex]\[
\boxed{706 \text{ m}^3}
\][/tex]
The final answer is [tex]\( 706 \text{ m}^3 \)[/tex].