An object in the shape of a rectangular prism has a length of 9 inches, a width of 3 inches,
and a height of 2 inches. The object's density is 12.1 grams per cubic centimeter. Find the
mass of the object to the nearest gram.
The mass of the object is about
grams.



Answer :

To solve this problem, we need to find the mass of a rectangular prism based on its dimensions and density. Let's follow a step-by-step approach:

1. Convert the dimensions from inches to centimeters:
- Length [tex]\( L \)[/tex] = 9 inches
- Width [tex]\( W \)[/tex] = 3 inches
- Height [tex]\( H \)[/tex] = 2 inches

We know that 1 inch equals 2.54 centimeters.

[tex]\[ L = 9 \text{ inches} \times 2.54 \text{ cm/inch} = 22.86 \text{ cm} \][/tex]
[tex]\[ W = 3 \text{ inches} \times 2.54 \text{ cm/inch} = 7.62 \text{ cm} \][/tex]
[tex]\[ H = 2 \text{ inches} \times 2.54 \text{ cm/inch} = 5.08 \text{ cm} \][/tex]

2. Calculate the volume of the rectangular prism in cubic centimeters:

The volume [tex]\( V \)[/tex] of a rectangular prism is given by the formula:

[tex]\[ V = L \times W \times H \][/tex]

Substituting the converted dimensions:

[tex]\[ V = 22.86 \text{ cm} \times 7.62 \text{ cm} \times 5.08 \text{ cm} = 885.066672 \text{ cm}^3 \][/tex]

3. Using the density to find the mass:

The density [tex]\( \rho \)[/tex] is given as 12.1 grams per cubic centimeter [tex]\( \text{g/cm}^3 \)[/tex].

The mass [tex]\( M \)[/tex] can be calculated using the formula:

[tex]\[ M = V \times \rho \][/tex]

Substituting the values:

[tex]\[ M = 885.066672 \text{ cm}^3 \times 12.1 \text{ g/cm}^3 = 10708.3067112 \text{ g} \][/tex]

4. Rounding the mass to the nearest gram:

To the nearest gram:

[tex]\[ M \approx 10708 \text{ g} \][/tex]

Therefore, the mass of the object is about 10708 grams.