Answer :
Let's go through each of the set operations described by their set-builder notation step-by-step:
### Given:
- [tex]\( P \)[/tex] and [tex]\( Q \)[/tex] are subsets of a universal set [tex]\( U \)[/tex].
### a) [tex]\(\{x \mid x = P \text{ or } x \in Q \}\)[/tex]
This represents the union of sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( P \)[/tex] or [tex]\( Q \)[/tex] or both.
Result: [tex]\( P \cup Q \)[/tex]
### b) [tex]\(\{x \mid x \in P \text{ and } x = Q \}\)[/tex]
This is slightly confusing due to the notation. Assuming it intends to mean 'and' in the regular sense, it should be the intersection of [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. This includes all elements that are in both [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
Result: [tex]\( P \cap Q \)[/tex]
### c) [tex]\(\{x \mid x \in P \text{ but } x \notin Q \}\)[/tex]
This represents the difference between sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( P \)[/tex] but not in [tex]\( Q \)[/tex].
Result: [tex]\( P - Q \)[/tex]
### d) [tex]\(\{x \mid x = Q \text{ but } x \notin P \}\)[/tex]
This represents the difference between sets [tex]\( Q \)[/tex] and [tex]\( P \)[/tex]. It includes all elements that are in [tex]\( Q \)[/tex] but not in [tex]\( P \)[/tex].
Result: [tex]\( Q - P \)[/tex]
### e) [tex]\(\{x \mid x \in U \text{ but } x = P \}\)[/tex]
This represents the complement of [tex]\( P \)[/tex] in [tex]\( U \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in [tex]\( P \)[/tex].
Result: [tex]\( U - P \)[/tex]
### f) [tex]\(\{x \mid x \in U \text{ but } x \notin Q \}\)[/tex]
This represents the complement of [tex]\( Q \)[/tex] in [tex]\( U \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in [tex]\( Q \)[/tex].
Result: [tex]\( U - Q \)[/tex]
### g) [tex]\(\{x \mid x = U \text{ but } x \notin (P \text{ or } Q) \}\)[/tex]
This represents the difference between the universal set [tex]\( U \)[/tex] and the union of [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in [tex]\( P \)[/tex] or [tex]\( Q \)[/tex].
Result: [tex]\( U - (P \cup Q) \)[/tex]
### h) [tex]\(\{x \mid x \in U \text{ but } x \notin (P \cap Q) \}\)[/tex]
This represents the difference between the universal set [tex]\( U \)[/tex] and the intersection of [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in both [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
Result: [tex]\( U - (P \cap Q) \)[/tex]
### i) [tex]\(\{x \mid x \in U \text{ but } x \notin (P - Q) \}\)[/tex]
This represents the difference between the universal set [tex]\( U \)[/tex] and [tex]\( P \)[/tex] minus [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in the difference between [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
Result: [tex]\( U - (P - Q) \)[/tex]
---
### Summary of Results
a) [tex]\( P \cup Q \)[/tex]
b) [tex]\( P \cap Q \)[/tex]
c) [tex]\( P - Q \)[/tex]
d) [tex]\( Q - P \)[/tex]
e) [tex]\( U - P \)[/tex]
f) [tex]\( U - Q \)[/tex]
g) [tex]\( U - (P \cup Q) \)[/tex]
h) [tex]\( U - (P \cap Q) \)[/tex]
i) [tex]\( U - (P - Q) \)[/tex]
### Given:
- [tex]\( P \)[/tex] and [tex]\( Q \)[/tex] are subsets of a universal set [tex]\( U \)[/tex].
### a) [tex]\(\{x \mid x = P \text{ or } x \in Q \}\)[/tex]
This represents the union of sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( P \)[/tex] or [tex]\( Q \)[/tex] or both.
Result: [tex]\( P \cup Q \)[/tex]
### b) [tex]\(\{x \mid x \in P \text{ and } x = Q \}\)[/tex]
This is slightly confusing due to the notation. Assuming it intends to mean 'and' in the regular sense, it should be the intersection of [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. This includes all elements that are in both [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
Result: [tex]\( P \cap Q \)[/tex]
### c) [tex]\(\{x \mid x \in P \text{ but } x \notin Q \}\)[/tex]
This represents the difference between sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( P \)[/tex] but not in [tex]\( Q \)[/tex].
Result: [tex]\( P - Q \)[/tex]
### d) [tex]\(\{x \mid x = Q \text{ but } x \notin P \}\)[/tex]
This represents the difference between sets [tex]\( Q \)[/tex] and [tex]\( P \)[/tex]. It includes all elements that are in [tex]\( Q \)[/tex] but not in [tex]\( P \)[/tex].
Result: [tex]\( Q - P \)[/tex]
### e) [tex]\(\{x \mid x \in U \text{ but } x = P \}\)[/tex]
This represents the complement of [tex]\( P \)[/tex] in [tex]\( U \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in [tex]\( P \)[/tex].
Result: [tex]\( U - P \)[/tex]
### f) [tex]\(\{x \mid x \in U \text{ but } x \notin Q \}\)[/tex]
This represents the complement of [tex]\( Q \)[/tex] in [tex]\( U \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in [tex]\( Q \)[/tex].
Result: [tex]\( U - Q \)[/tex]
### g) [tex]\(\{x \mid x = U \text{ but } x \notin (P \text{ or } Q) \}\)[/tex]
This represents the difference between the universal set [tex]\( U \)[/tex] and the union of [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in [tex]\( P \)[/tex] or [tex]\( Q \)[/tex].
Result: [tex]\( U - (P \cup Q) \)[/tex]
### h) [tex]\(\{x \mid x \in U \text{ but } x \notin (P \cap Q) \}\)[/tex]
This represents the difference between the universal set [tex]\( U \)[/tex] and the intersection of [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in both [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
Result: [tex]\( U - (P \cap Q) \)[/tex]
### i) [tex]\(\{x \mid x \in U \text{ but } x \notin (P - Q) \}\)[/tex]
This represents the difference between the universal set [tex]\( U \)[/tex] and [tex]\( P \)[/tex] minus [tex]\( Q \)[/tex]. It includes all elements that are in [tex]\( U \)[/tex] but not in the difference between [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
Result: [tex]\( U - (P - Q) \)[/tex]
---
### Summary of Results
a) [tex]\( P \cup Q \)[/tex]
b) [tex]\( P \cap Q \)[/tex]
c) [tex]\( P - Q \)[/tex]
d) [tex]\( Q - P \)[/tex]
e) [tex]\( U - P \)[/tex]
f) [tex]\( U - Q \)[/tex]
g) [tex]\( U - (P \cup Q) \)[/tex]
h) [tex]\( U - (P \cap Q) \)[/tex]
i) [tex]\( U - (P - Q) \)[/tex]