Select the correct answer.
For an art project, a cone is covered with paper without any gaps or overlaps. The height of the cone is 28 inches and its diameter is 14 inches.
What is the surface area of the covering to the nearest square inch?
OA. 635 in²
B. 1,376 in²
O c. 789 in²
D. 1,993 in²



Answer :

To find the surface area of a cone, we need to consider both the base area and the lateral surface area. Given the problem:

- Height of the cone (h) = 28 inches
- Diameter of the base (d) = 14 inches
- Radius of the base (r) = diameter / 2 = 14 / 2 = 7 inches

The first step is to determine the slant height (l) of the cone. The slant height can be found using the Pythagorean theorem:

[tex]\[ l = \sqrt{h^2 + r^2} \][/tex]

Substitute the given values:

[tex]\[ l = \sqrt{28^2 + 7^2} \approx 28.86 \text{ inches} \][/tex]

Next, calculate the base area (A_base) of the cone using the formula for the area of a circle:

[tex]\[ A_{\text{base}} = \pi r^2 \][/tex]

[tex]\[ A_{\text{base}} = \pi \times 7^2 \approx 153.94 \text{ square inches} \][/tex]

Then, we calculate the lateral surface area (A_lateral) of the cone using the formula:

[tex]\[ A_{\text{lateral}} = \pi r l \][/tex]

[tex]\[ A_{\text{lateral}} = \pi \times 7 \times 28.86 \approx 634.70 \text{ square inches} \][/tex]

Finally, to find the total surface area (A_total) of the cone, sum the base area and the lateral surface area:

[tex]\[ A_{\text{total}} = A_{\text{base}} + A_{\text{lateral}} \][/tex]

[tex]\[ A_{\text{total}} = 153.94 + 634.70 \approx 788.64 \text{ square inches} \][/tex]

Rounding to the nearest square inch, the surface area is:

[tex]\[ \text{Surface area} \approx 789 \text{ square inches} \][/tex]

Therefore, the correct answer is:
- Option C: 789 in²