Answer :

To find the derivative of the function [tex]\( f(x) = \sqrt{x^2 + a^2} - \sqrt{x^2 - a} \)[/tex] with respect to [tex]\( x \)[/tex], we can follow these steps:

1. Express the Function and Differentiate:
The function is:
[tex]\[ f(x) = \sqrt{x^2 + a^2} - \sqrt{x^2 - a} \][/tex]

2. Differentiate Each Term Separately:
We will use the chain rule to differentiate each term separately.

3. Differentiate [tex]\( \sqrt{x^2 + a^2} \)[/tex]:
Let [tex]\( u = x^2 + a^2 \)[/tex]. Then the term becomes [tex]\( \sqrt{u} \)[/tex].
[tex]\[ \frac{d}{dx}\sqrt{u} = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
Since [tex]\( u = x^2 + a^2 \)[/tex], we have:
[tex]\[ \frac{du}{dx} = 2x \][/tex]
So,
[tex]\[ \frac{d}{dx}\sqrt{x^2 + a^2} = \frac{1}{2\sqrt{x^2 + a^2}} \cdot 2x = \frac{x}{\sqrt{x^2 + a^2}} \][/tex]

4. Differentiate [tex]\( \sqrt{x^2 - a} \)[/tex]:
Let [tex]\( v = x^2 - a \)[/tex]. Then the term becomes [tex]\( \sqrt{v} \)[/tex].
[tex]\[ \frac{d}{dx}\sqrt{v} = \frac{1}{2\sqrt{v}} \cdot \frac{dv}{dx} \][/tex]
Since [tex]\( v = x^2 - a \)[/tex], we have:
[tex]\[ \frac{dv}{dx} = 2x \][/tex]
So,
[tex]\[ \frac{d}{dx}\sqrt{x^2 - a} = \frac{1}{2\sqrt{x^2 - a}} \cdot 2x = \frac{x}{\sqrt{x^2 - a}} \][/tex]

5. Combine the Derivatives:
Now we can combine the derivatives of both terms:
[tex]\[ f'(x) = \frac{x}{\sqrt{x^2 + a^2}} - \frac{x}{\sqrt{x^2 - a}} \][/tex]

Therefore, the derivative of the function [tex]\( f(x) = \sqrt{x^2 + a^2} - \sqrt{x^2 - a} \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ f'(x) = \frac{x}{\sqrt{x^2 + a^2}} - \frac{x}{\sqrt{x^2 - a}} \][/tex]