TU has a midpoint at M(2.15, 10.7). Point U is at
(13.7, 14.5). Find the coordinates of point T.
Write the coordinates as decimals or integers.
T = (



Answer :

To find the coordinates of point T, we can use the midpoint formula and knowledge of coordinate geometry. The midpoint formula states that given two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], the coordinates of the midpoint [tex]\(M\)[/tex] are:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

In this problem:
- The midpoint [tex]\(M\)[/tex] is given as [tex]\((2.15, 10.7)\)[/tex].
- Point [tex]\(U\)[/tex] is given as [tex]\((13.7, 14.5)\)[/tex].
- Let the coordinates of point [tex]\(T\)[/tex] be [tex]\((x_1, y_1)\)[/tex].

We can use the midpoint formula and rearrange it to solve for [tex]\(x_1\)[/tex] and [tex]\(y_1\)[/tex].

[tex]\[ \left( \frac{x_1 + 13.7}{2}, \frac{y_1 + 14.5}{2} \right) = (2.15, 10.7) \][/tex]

From the x-coordinates:

[tex]\[ \frac{x_1 + 13.7}{2} = 2.15 \][/tex]

Multiply both sides by 2:

[tex]\[ x_1 + 13.7 = 4.3 \][/tex]

Subtract 13.7 from both sides:

[tex]\[ x_1 = 4.3 - 13.7 \][/tex]

[tex]\[ x_1 = -9.4 \][/tex]

From the y-coordinates:

[tex]\[ \frac{y_1 + 14.5}{2} = 10.7 \][/tex]

Multiply both sides by 2:

[tex]\[ y_1 + 14.5 = 21.4 \][/tex]

Subtract 14.5 from both sides:

[tex]\[ y_1 = 21.4 - 14.5 \][/tex]

[tex]\[ y_1 = 6.9 \][/tex]

Thus, the coordinates of point [tex]\(T\)[/tex] are [tex]\((-9.4, 6.9)\)[/tex].

So,

[tex]\[ T = (-9.4, 6.9) \][/tex]