Answer :
Of course! Let's solve this step-by-step.
1. Understand the Problem:
We have a right triangle where:
- [tex]\( b = 3.3 \)[/tex] kilometers (one leg)
- [tex]\( c = 5 \)[/tex] kilometers (the hypotenuse)
2. Use the Pythagorean Theorem:
The Pythagorean theorem states that for a right triangle:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
3. Rearrange to Solve for [tex]\( a^2 \)[/tex]:
Substitute in the given values [tex]\( b = 3.3 \)[/tex] and [tex]\( c = 5 \)[/tex]:
[tex]\[ a^2 + 3.3^2 = 5^2 \][/tex]
[tex]\[ a^2 + 10.89 = 25 \][/tex]
4. Solve for [tex]\( a^2 \)[/tex]:
[tex]\[ a^2 = 25 - 10.89 \][/tex]
[tex]\[ a^2 = 14.11 \][/tex]
5. Find [tex]\( a \)[/tex]:
Take the square root of both sides to find [tex]\( a \)[/tex]:
[tex]\[ a = \sqrt{14.11} \][/tex]
[tex]\[ a \approx 3.75 \][/tex]
6. Calculate the Perimeter:
The perimeter [tex]\( P \)[/tex] of a triangle is the sum of all its sides:
[tex]\[ P = a + b + c \][/tex]
Substitute [tex]\( a \approx 3.75 \)[/tex], [tex]\( b = 3.3 \)[/tex], and [tex]\( c = 5 \)[/tex]:
[tex]\[ P = 3.75 + 3.3 + 5 \][/tex]
[tex]\[ P = 12.05 \][/tex]
7. Round to the Nearest Tenth:
Therefore, rounding [tex]\( 12.05 \)[/tex] to the nearest tenth:
[tex]\[ P \approx 12.1 \][/tex]
Final Answer:
The perimeter of the right triangle is approximately [tex]\( 12.1 \)[/tex] kilometers.
1. Understand the Problem:
We have a right triangle where:
- [tex]\( b = 3.3 \)[/tex] kilometers (one leg)
- [tex]\( c = 5 \)[/tex] kilometers (the hypotenuse)
2. Use the Pythagorean Theorem:
The Pythagorean theorem states that for a right triangle:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
3. Rearrange to Solve for [tex]\( a^2 \)[/tex]:
Substitute in the given values [tex]\( b = 3.3 \)[/tex] and [tex]\( c = 5 \)[/tex]:
[tex]\[ a^2 + 3.3^2 = 5^2 \][/tex]
[tex]\[ a^2 + 10.89 = 25 \][/tex]
4. Solve for [tex]\( a^2 \)[/tex]:
[tex]\[ a^2 = 25 - 10.89 \][/tex]
[tex]\[ a^2 = 14.11 \][/tex]
5. Find [tex]\( a \)[/tex]:
Take the square root of both sides to find [tex]\( a \)[/tex]:
[tex]\[ a = \sqrt{14.11} \][/tex]
[tex]\[ a \approx 3.75 \][/tex]
6. Calculate the Perimeter:
The perimeter [tex]\( P \)[/tex] of a triangle is the sum of all its sides:
[tex]\[ P = a + b + c \][/tex]
Substitute [tex]\( a \approx 3.75 \)[/tex], [tex]\( b = 3.3 \)[/tex], and [tex]\( c = 5 \)[/tex]:
[tex]\[ P = 3.75 + 3.3 + 5 \][/tex]
[tex]\[ P = 12.05 \][/tex]
7. Round to the Nearest Tenth:
Therefore, rounding [tex]\( 12.05 \)[/tex] to the nearest tenth:
[tex]\[ P \approx 12.1 \][/tex]
Final Answer:
The perimeter of the right triangle is approximately [tex]\( 12.1 \)[/tex] kilometers.