Question 11 (2 points)
Saved
(Rotations MC)
Triangle UVW has vertices at U(-2, 0), V(-3, 1), W(-3, 3), Determine the vertices of
image U'V'W' if the preimage is rotated 180° counterclockwise.
U'(0, -2), V'(-1,-3), W'(-3, -3)
U'(0, -2), V'(1,-3), W'(3,-3)
U'(2, 0), V'(3, -1), W'(3,-3)
OU'(-1, 0), V'(-3, 0), W'(3,-3)
estion 12 (2 points)



Answer :

To determine the vertices of the image [tex]\(U'V'W'\)[/tex] after rotating triangle [tex]\(UVW\)[/tex] 180° counterclockwise, we need to apply the rotation transformation to each vertex of the triangle.

A rotation by 180° counterclockwise (which is the same as a 180° clockwise rotation due to symmetry) about the origin can be achieved using the following transformation:
[tex]\[ (x', y') = (-x, -y) \][/tex]

This means for any vertex [tex]\((x, y)\)[/tex], the new coordinates after the rotation will be [tex]\((-x, -y)\)[/tex].

Let's apply this transformation to each vertex of triangle [tex]\(UVW\)[/tex]:

1. For vertex [tex]\(U(-2, 0)\)[/tex]:
[tex]\[ U' = (-(-2), -0) = (2, 0) \][/tex]

2. For vertex [tex]\(V(-3, 1)\)[/tex]:
[tex]\[ V' = (-(-3), -1) = (3, -1) \][/tex]

3. For vertex [tex]\(W(-3, 3)\)[/tex]:
[tex]\[ W' = (-(-3), -3) = (3, -3) \][/tex]

So, the vertices of the image [tex]\(U'V'W'\)[/tex] after rotating 180° counterclockwise are:
[tex]\[ U'(2, 0), V'(3, -1), W'(3, -3) \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{U'(2, 0), V'(3, -1), W'(3, -3)} \][/tex]