Answer :
Certainly! Let's tackle the problem of finding the volume of a tree stump modeled as a right cylinder given its height in feet and its circumference in inches. To do this, we need to follow these steps:
1. Convert the height from feet to inches.
2. Find the radius of the cylinder from its circumference.
3. Use the formula for the volume of a cylinder to find the volume.
### Step-by-Step Solution
1. Convert the height from feet to inches:
- The height provided is [tex]\( 1.6 \)[/tex] feet.
- We know that [tex]\( 1 \)[/tex] foot is equal to [tex]\( 12 \)[/tex] inches.
- Therefore, the height in inches is:
[tex]\[ \text{Height in inches} = 1.6 \times 12 = 19.2 \text{ inches} \][/tex]
2. Find the radius from the circumference:
- The circumference provided is [tex]\( 61 \)[/tex] inches.
- The formula for the circumference [tex]\( C \)[/tex] of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( r \)[/tex] is the radius.
- We need to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{C}{2 \pi} = \frac{61}{2 \pi} \][/tex]
- Plug in the value of [tex]\( \pi \)[/tex] (approximately [tex]\( 3.1416 \)[/tex]):
[tex]\[ r = \frac{61}{2 \times 3.1416} \approx \frac{61}{6.2832} \approx 9.7 \text{ inches} \][/tex]
3. Calculate the volume of the cylinder:
- The formula for the volume [tex]\( V \)[/tex] of a cylinder is:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height.
- Substituting the radius [tex]\( r \approx 9.7 \)[/tex] inches and height [tex]\( h = 19.2 \)[/tex] inches:
[tex]\[ V = \pi (9.7)^2 \times 19.2 \][/tex]
- Calculate [tex]\( 9.7^2 \)[/tex]:
[tex]\[ 9.7^2 = 94.09 \][/tex]
- Now calculate the volume:
[tex]\[ V = \pi \times 94.09 \times 19.2 \approx 3.1416 \times 94.09 \times 19.2 \approx 3.1416 \times 1805.728 \][/tex]
[tex]\[ V \approx 5672.3 \text{ cubic inches} \][/tex]
### Final Answer
The volume of the tree stump is approximately [tex]\( 5672.3 \)[/tex] cubic inches, rounded to the nearest tenth.
1. Convert the height from feet to inches.
2. Find the radius of the cylinder from its circumference.
3. Use the formula for the volume of a cylinder to find the volume.
### Step-by-Step Solution
1. Convert the height from feet to inches:
- The height provided is [tex]\( 1.6 \)[/tex] feet.
- We know that [tex]\( 1 \)[/tex] foot is equal to [tex]\( 12 \)[/tex] inches.
- Therefore, the height in inches is:
[tex]\[ \text{Height in inches} = 1.6 \times 12 = 19.2 \text{ inches} \][/tex]
2. Find the radius from the circumference:
- The circumference provided is [tex]\( 61 \)[/tex] inches.
- The formula for the circumference [tex]\( C \)[/tex] of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
where [tex]\( r \)[/tex] is the radius.
- We need to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{C}{2 \pi} = \frac{61}{2 \pi} \][/tex]
- Plug in the value of [tex]\( \pi \)[/tex] (approximately [tex]\( 3.1416 \)[/tex]):
[tex]\[ r = \frac{61}{2 \times 3.1416} \approx \frac{61}{6.2832} \approx 9.7 \text{ inches} \][/tex]
3. Calculate the volume of the cylinder:
- The formula for the volume [tex]\( V \)[/tex] of a cylinder is:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height.
- Substituting the radius [tex]\( r \approx 9.7 \)[/tex] inches and height [tex]\( h = 19.2 \)[/tex] inches:
[tex]\[ V = \pi (9.7)^2 \times 19.2 \][/tex]
- Calculate [tex]\( 9.7^2 \)[/tex]:
[tex]\[ 9.7^2 = 94.09 \][/tex]
- Now calculate the volume:
[tex]\[ V = \pi \times 94.09 \times 19.2 \approx 3.1416 \times 94.09 \times 19.2 \approx 3.1416 \times 1805.728 \][/tex]
[tex]\[ V \approx 5672.3 \text{ cubic inches} \][/tex]
### Final Answer
The volume of the tree stump is approximately [tex]\( 5672.3 \)[/tex] cubic inches, rounded to the nearest tenth.