A right circular cylinder has a height of 6 1/4. and a diameter of 3 1/2 times it's height.
What is the volume of the cylinder?
Enter your answer as a decimal in the box, just the number no units.
Use 3.14 for πt. Round your answer to the nearest hundredth.
volume =
diameter
height
decimal point
thousands
tens
tenths
thousandths



Answer :

To find the volume of a right circular cylinder with the given parameters, we need to follow these steps:

1. Convert the height to a decimal:
[tex]\( 6 \frac{1}{4} = 6 + 0.25 = 6.25 \)[/tex]

2. Calculate the diameter:
The diameter is 3.5 times the height.
[tex]\[ \text{Diameter} = 3.5 \times 6.25 = 21.875 \][/tex]

3. Determine the radius:
The radius is half of the diameter.
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} = \frac{21.875}{2} = 10.9375 \][/tex]

4. Use the formula for the volume of a cylinder:
The volume [tex]\( V \)[/tex] of a cylinder is given by [tex]\( V = \pi r^2 h \)[/tex].
Substituting [tex]\( \pi = 3.14 \)[/tex], [tex]\( r = 10.9375 \)[/tex], and [tex]\( h = 6.25 \)[/tex]:
[tex]\[ V = 3.14 \times (10.9375^2) \times 6.25 \][/tex]

5. Calculate the radius squared:
[tex]\[ 10.9375^2 = 119.62890625 \][/tex]

6. Calculate the volume:
[tex]\[ V = 3.14 \times 119.62890625 \times 6.25 \][/tex]
[tex]\[ V = 3.14 \times 747.6806640625 \][/tex]
[tex]\[ V = 2347.6752867953125 \][/tex]

7. Round to the nearest hundredth:
[tex]\[ \text{Volume} \approx 2347.68 \][/tex]

Therefore, the volume of the cylinder is [tex]\( \boxed{2347.68} \)[/tex].