Answer :
To calculate the volume of a cylinder, we use the formula:
[tex]\[ V = πr^2h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( π \)[/tex] (pi) is approximately 3.14,
- [tex]\( r \)[/tex] is the radius of the base of the cylinder,
- [tex]\( h \)[/tex] is the height of the cylinder.
Given:
- The height [tex]\( h = 13 \)[/tex] meters,
- The radius [tex]\( r = 19 \)[/tex] meters,
- [tex]\( π ≈ 3.14 \)[/tex].
Now, let's calculate the volume step by step.
1. First, calculate the square of the radius:
[tex]\[ r^2 = 19^2 = 361 \][/tex]
2. Next, multiply this value by [tex]\( π \)[/tex]:
[tex]\[ πr^2 = 3.14 \times 361 \][/tex]
Perform the multiplication:
[tex]\[ 3.14 \times 361 ≈ 1133.54 \][/tex]
3. Finally, multiply this result by the height of the cylinder:
[tex]\[ V = 1133.54 \times 13 \][/tex]
Perform the multiplication:
[tex]\[ 1133.54 \times 13 ≈ 14736.02 \][/tex]
So, the volume of the cylinder, rounded to the nearest hundredth, is approximately:
[tex]\[ V ≈ 14736.02 \text{ cubic meters} \][/tex]
[tex]\[ V = πr^2h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( π \)[/tex] (pi) is approximately 3.14,
- [tex]\( r \)[/tex] is the radius of the base of the cylinder,
- [tex]\( h \)[/tex] is the height of the cylinder.
Given:
- The height [tex]\( h = 13 \)[/tex] meters,
- The radius [tex]\( r = 19 \)[/tex] meters,
- [tex]\( π ≈ 3.14 \)[/tex].
Now, let's calculate the volume step by step.
1. First, calculate the square of the radius:
[tex]\[ r^2 = 19^2 = 361 \][/tex]
2. Next, multiply this value by [tex]\( π \)[/tex]:
[tex]\[ πr^2 = 3.14 \times 361 \][/tex]
Perform the multiplication:
[tex]\[ 3.14 \times 361 ≈ 1133.54 \][/tex]
3. Finally, multiply this result by the height of the cylinder:
[tex]\[ V = 1133.54 \times 13 \][/tex]
Perform the multiplication:
[tex]\[ 1133.54 \times 13 ≈ 14736.02 \][/tex]
So, the volume of the cylinder, rounded to the nearest hundredth, is approximately:
[tex]\[ V ≈ 14736.02 \text{ cubic meters} \][/tex]