Answer:
[tex]\textsf{B)}\quad \theta=\dfrac{7}{5}[/tex]
Step-by-step explanation:
To find the equation that gives the measure of the central angle q, we can use the arc length formula:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Arc length}}\\\\s=r \theta\\\\\textsf{where:}\\\phantom{ww}\bullet\; \textsf{$s$ is the arc length.}\\ \phantom{ww}\bullet\; \textsf{$r$ is the radius.}\\ \phantom{ww}\bullet\;\textsf{$\theta$ is the angle measured in radians.}\end{array}}[/tex]
In this case:
Substitute the values into the formula and solve for θ:
[tex]7=5 \cdot \theta\\\\\\\theta=\dfrac{7}{5}[/tex]
Therefore, the equation that gives the measure of the central angle is:
[tex]\Large\boxed{\boxed{\theta=\dfrac{7}{5}}}[/tex]