Answer :

Answer:

A. - 0.25

Step-by-step explanation:

From the graph,

The coordinates of the given points are:

(-3, 3) {3 boxes from the origin to the point on the negative x - axis and 3 boxes trace up to the positive y- axis}, (1,2) { 1 box from the origin to the second point on the positive x- axis and trace up to positive y- axis}.

Let the first point be (x1, y1) = (-3,3) and second point be (x2, y2) = (1,2).

Therefore, the slope of the graph

[tex]m = \frac{ y_{2} - y_{1} }{ x_{2} - x_{1} } [/tex]

[tex] = \frac{2 - 3}{1 - ( - 3)} = \frac{ - 1}{1 + 3} [/tex]

[tex] = - \frac{1}{4} [/tex]

m = -0.25

Hence, the slope of the graph is - 0.25

msm555

Answer:

A. -0.25

Step-by-step explanation:

To find the slope of the line passing through the points [tex]\sf (-3,3)[/tex] and [tex]\sf (1,2)[/tex], we'll use the formula for slope:

[tex]\sf \textsf{Slope} = \dfrac{{\textsf{change in y}}}{{\textsf{change in x}}} [/tex]

Given two points [tex]\sf (x_1, y_1)[/tex] and [tex]\sf (x_2, y_2)[/tex], the slope formula can be expressed as:

[tex]\sf \textsf{Slope} = \dfrac{{y_2 - y_1}}{{x_2 - x_1}} [/tex]

Now, let's substitute the given points into the formula:

[tex]\sf \textsf{Slope} = \dfrac{{2 - 3}}{{1 - (-3)}} [/tex]

[tex]\sf \textsf{Slope} = \dfrac{{-1}}{{1 + 3}} [/tex]

[tex]\sf \textsf{Slope} = \dfrac{{-1}}{{4}} [/tex]

[tex]\sf \textsf{Slope} = -0.25 [/tex]

So, the slope of the line is:

[tex]\boxed{\sf A) -0.25 }[/tex]