Answer :

Answer:

[tex]\frac{ - 2(x + 6)}{ {x}^{2} - 16}[/tex]

Step-by-step explanation:

[tex] \frac{x}{ {x}^{2} - 16 } - \frac{3}{x - 4} [/tex]

[tex] = \frac{x}{ {x}^{2} - {4}^{2} } - \frac{3}{x - 4} [/tex]

Find the LCM is

[tex] {x}^{2} - {4}^{2} = (x - 4)(x + 4) [/tex]

[tex] = \frac{x - 3(x + 4)}{ {x}^{2} - {4}^{2} } [/tex]

[tex] = \frac{x - 3x - 12}{ {x}^{2} - {4}^{2} } [/tex]

[tex] = \frac{ - 2x -12 }{ {x}^{2} - 16} [/tex]

[tex] = \frac{ - 2(x + 6)}{ {x}^{2} - 16} [/tex]

Other Questions