Answer :

msm555

Answer:

[tex] \sf \tan(T) =\dfrac{{15}}{{8}}[/tex]

Step-by-step explanation:

Given:

In ∆ UVT

  • Opposite (UV) = 15
  • Hypotenuse (UT) = 17

To find:

  • Tangent of ∠ T = ?

Solution:

To find the tangent of ∠ T in triangle ∆ UVT, we use the definition of tangent:

[tex] \Large \boxed{\boxed{\sf \tan(T) =\dfrac{{\textsf{Opposite}}}{{\textsf{Adjacent}}}}}[/tex]

[tex] \sf \tan(T) =\dfrac{{\textsf{UV}}}{{\textsf{VT}}} [/tex]

We need to find the length of the adjacent side (VT) using the Pythagorean theorem:

[tex] \sf UT^2 = UV^2 + VT^2[/tex]

[tex] \sf 17^2 = 15^2 + VT^2[/tex]

[tex] \sf 289 = 225 + VT^2[/tex]

[tex] \sf VT^2 = 289 - 225[/tex]

[tex] \sf VT^2 = 64[/tex]

[tex] \sf VT = \sqrt{64}[/tex]

[tex] \sf VT = 8[/tex]

Now, substitute the values into the formula for tangent:

[tex] \sf \tan(T) =\dfrac{{15}}{{8}}[/tex]

So, the tangent of ∠ T is 15/8.