Answer :
Answer:
sin H = 12 / 13
Step-by-step explanation:
Considering the triangle IHG,
Hypotenuse side = 13
Opposite side = 12
Adjacent side = 5
Using Trigonometric ratio,
sin H = opposite side / hypotenuse
sin H = 12 / 13
Answer:
[tex] \sf \sin(H) = \dfrac{{12}}{{13}}[/tex]
Step-by-step explanation:
To find the sine of ∠ H in triangle ∆ GHI, we use the definition of sine:
[tex]\Large\boxed{\boxed{ \sf \sin(H) = \dfrac{{\textsf{Opposite}}}{{\textsf{Hypotenuse}}}}}[/tex]
Given:
- Opposite side (GI) = 12
- Hypotenuse (HI) = 13
- Adjacent (GH) = 5
Substitute the values into the formula:
[tex] \sf \sin(H) = \dfrac{{12}}{{13}}[/tex]
So, the sine of ∠ H is 12/13.