Answer :

Answer:

∠ B ≈ 22.0°

Step-by-step explanation:

Using the Sine Rule in Δ ABC

• [tex]\frac{a}{sinA}[/tex] = [tex]\frac{b}{sinB}[/tex] = [tex]\frac{c}{sinC}[/tex]

a, b , c are the sides opposite ∠ A, ∠ B , ∠ C , respectively.

here b = AC , c = AB , then

[tex]\frac{AC}{sinB}[/tex] = [tex]\frac{AB}{sinC}[/tex] ( substitute values )

[tex]\frac{12}{sinB}[/tex] = [tex]\frac{32}{sin93}[/tex] ( cross multiply )

32 × sin B = 12 × sin93° ( divide both sides by 32 )

sin B = [tex]\frac{12sin93}{32}[/tex] , then

∠ B = [tex]sin^{-1}[/tex] ( [tex]\frac{12sin93}{32}[/tex] ) ≈ 22.0° ( to the nearest tenth )