Answer:
cos V = [tex]\frac{5}{13}[/tex]
Step-by-step explanation:
cos V = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{TV}{UV}[/tex]
We require to calculate UV
Using Pythagoras' identity in the right triangle
• c² = a² + b² ( c is the hypotenuse and a, b the legs )
let c = UV , a = TV , b = TU
UV² = TV² + TU² ( substitute values )
UV² = 10² + 24² = 100 + 576 = 676 ( take square root of both sides )
[tex]\sqrt{UV^2}[/tex] = [tex]\sqrt{676}[/tex]
UV = 26
Then
cos V = [tex]\frac{TV}{UV}[/tex] = [tex]\frac{10}{26}[/tex] = [tex]\frac{5}{13}[/tex]