To determine the maximum frictional force acting on an object given the coefficient of static friction and the normal force, we use the formula for static friction:
[tex]\[ f_{\text{max}} = \mu \cdot F_{\text{N}} \][/tex]
where:
- [tex]\( f_{\text{max}} \)[/tex] is the maximum frictional force,
- [tex]\( \mu \)[/tex] is the coefficient of static friction, and
- [tex]\( F_{\text{N}} \)[/tex] is the normal force.
Given that:
- The coefficient of static friction ([tex]\( \mu \)[/tex]) is 0.35, and
- The normal force ([tex]\( F_{\text{N}} \)[/tex]) is 80 newtons,
we can substitute these values into the formula:
[tex]\[ f_{\text{max}} = 0.35 \cdot 80 \][/tex]
Therefore:
[tex]\[ f_{\text{max}} = 28 \, \text{newtons} \][/tex]
So, the maximum frictional force is 28 newtons.
The correct answer is:
O B. 28 newtons