Answer:
∠S = 36.4
Step-by-step explanation:
Given:
Where:
To find the value of ∠S we can use the Cosine Rule
[tex]s^2 = t^2 + u^2 - 2tu \times \cos(S)[/tex]
Making cos(S) the subject of the formula
[tex]2tu \times \cos(S) = t^2 + u^2 - s^2[/tex]
[tex]cos(S) = \frac{t^2 + u^2 - s^2}{2tu}[/tex]
[tex]cos(S) = \frac{18 in^2 + 52 in^2 - 39 in^2}{2 \times 18 in \times 52 in}[/tex]
[tex]\cos(S) = \frac{324in^2 + 2704 in^2 - 1521 in^2}{1872 in^2}[/tex]
[tex]\cos(S) = \frac{1507 in^2}{1872 in^2}[/tex]
[tex]\cos(S) = 0.8050[/tex]
[tex]\angle S = \cos^{-1}(0.8050)[/tex]
[tex]\angle S \approx 36.4[/tex]