Answer :
Sure, let's find the area of the circle made by Nabina step-by-step.
To find the area of a circle, we use the formula:
[tex]\[ \text{Area} = \pi \times r^2 \][/tex]
where [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.14159, and [tex]\( r \)[/tex] is the radius of the circle.
Given:
- Radius of Nabina's circle, [tex]\( r = 20 \)[/tex] meters
Using the formula:
[tex]\[ \text{Area} = \pi \times (20)^2 \][/tex]
Now, substituting the values:
[tex]\[ \text{Area} = \pi \times 400 \][/tex]
This results in:
[tex]\[ \text{Area} \approx 1256.6370614359173 \, \text{square meters} \][/tex]
So, the area of the circle made by Nabina is approximately [tex]\( 1256.64 \)[/tex] square meters.
To find the area of a circle, we use the formula:
[tex]\[ \text{Area} = \pi \times r^2 \][/tex]
where [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.14159, and [tex]\( r \)[/tex] is the radius of the circle.
Given:
- Radius of Nabina's circle, [tex]\( r = 20 \)[/tex] meters
Using the formula:
[tex]\[ \text{Area} = \pi \times (20)^2 \][/tex]
Now, substituting the values:
[tex]\[ \text{Area} = \pi \times 400 \][/tex]
This results in:
[tex]\[ \text{Area} \approx 1256.6370614359173 \, \text{square meters} \][/tex]
So, the area of the circle made by Nabina is approximately [tex]\( 1256.64 \)[/tex] square meters.