Answer :

Answer:

[tex]\dfrac{z-t}{z-y}[/tex]

Step-by-step explanation:

[tex]\dfrac{3(x+y)^{10}}{18(z-t)^{19}}\times\dfrac{10(x+y)(z-t)^4}{12(x+y)^3(z-y)}\times\dfrac{108(x+y)^2(z-t)^{20}}{15(z-t)^4(x+y)^{10}}[/tex]

Multiply the numerator and denominator:

[tex]\dfrac{3240(x+y)^{10+1+2}(z-t)^{4+20}}{3240(z-t)^{19+4}(x+y)^{3+10}(z-y)}[/tex]

Simplify:

[tex]\dfrac{(x+y)^{13}(z-t)^{24}}{(z-t)^{23}(x+y)^{13}(z-y)}\\\\\\=\dfrac{(z-t)^{24-23}}{z-y}\\\\\\=\dfrac{z-t}{z-y}[/tex]

Answer:

[tex]\dfrac{z-t}{z-y}[/tex]

Step-by-step explanation:

Given multiplication:

[tex]\dfrac{3(x+y)^{10}}{18(z-t)^{19}} \times \dfrac{10(x+y)(z-t)^{4}}{12(x+y)^{3}(z-y)} \times \dfrac{108(x+y)^{2}(z-t)^{20}}{15(z-t)^{4}(x+y)^{10}}[/tex]

When we multiply fractions, the general rule is to multiply the numerators together and the denominators together. Therefore:

[tex]\dfrac{3\times 10 \times 108(x+y)^{10}(x+y)(z-t)^{4}(x+y)^{2}(z-t)^{20}}{18\times 12 \times 15(z-t)^{19}(x+y)^{3}(z-y)(z-t)^{4}(x+y)^{10}}[/tex]

Multiply the numbers:

[tex]\dfrac{3240(x+y)^{10}(x+y)(z-t)^{4}(x+y)^{2}(z-t)^{20}}{3240(z-t)^{19}(x+y)^{3}(z-y)(z-t)^{4}(x+y)^{10}}[/tex]

Cancel the common factors 3240, (x + y)¹⁰ and (z - t)⁴:

[tex]\dfrac{(x+y)(x+y)^{2}(z-t)^{20}}{(z-t)^{19}(x+y)^{3}(z-y)}[/tex]

Apply the product rule of exponents to the numerator, which states that when multiplying two expressions with the same base, we add the exponents. Therefore:

[tex]\dfrac{(x+y)^{1+2}(z-t)^{20}}{(z-t)^{19}(x+y)^{3}(z-y)} \\\\\\\\ \dfrac{(x+y)^{3}(z-t)^{20}}{(z-t)^{19}(x+y)^{3}(z-y)}[/tex]

Cancel the common factor (x + y)³:

[tex]\dfrac{(z-t)^{20}}{(z-t)^{19}(z-y)}[/tex]

Now, apply the quotient rule of exponents, which states that when dividing two expressions with the same base, we subtract the exponents:

[tex]\dfrac{(z-t)^{20-19}}{(z-y)} \\\\\\\\ \dfrac{(z-t)^1}{(z-y)} \\\\\\\\ \dfrac{z-t}{z-y}[/tex]

Therefore, the given expression simplified is:

[tex]\Large\boxed{\boxed{\dfrac{z-t}{z-y}}}[/tex]