Answer :

Answer:

see explanation

Step-by-step explanation:

(1)

given 3 sides of a triangle , a , b , c

with c being the longest side

• If a² + b² = c² ⇒ right triangle

given the 3 sides 15 , 20 and 25

let a = 15 , b = 20 and c = 25 , then

a² + b² = 15² + 20² = 225 + 400 = 625

c² = 25² = 625

Since a² + b² = c² , then the 3 sides form a right triangle

---------------------------------------------------------------------------------------

(2)

Using Pythagoras' identity in the right triangle

• a² + b² = c² ( c is the hypotenuse and a, b the legs

let a = 15 , b = 8 and c = walkway , then

15² + 8² = c²

225 + 64 = w²

289 = w² ( take square root of both sides )

[tex]\sqrt{289}[/tex] = [tex]\sqrt{w^2}[/tex] , that is

w = 17

The walkway is 17 feet long

---------------------------------------------------------------------------------

(3)

Using Pythagoras' identity in the right triangle

let a = x , b = 7 and c = 18.4 , then

x² + 7² = 18.4²

x² + 49 = 338.56 ( subtract 49 from both sides )

x² = 289.56 ( take square root of both sides )

[tex]\sqrt{x^2}[/tex] = [tex]\sqrt{289.56}[/tex]

x ≈ 17 cm ( to the nearest cm ) , that is option 2

-------------------------------------------------------------------------------

(4)

The diagonal divides the rectangle into 2 right triangles

Using Pythagoras' identity in the right triangle with the diagonal the hypotenuse

let a = 48 , b = 40 and c = diagonal, then

c² = 48² + 40² = 2304 + 1600 = 3904 ( take square root of both sides )

[tex]\sqrt{c^2}[/tex] = [tex]\sqrt{3904}[/tex]

c ≈ 62 in ( to the nearest inch ) , that is option 2